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Multiply By To obtain
millimeter (mm) 254 inch
meter (m) 3.281 foot
kilometer (km) 0.6214 mile
square meter (m?) 10.76 square foot
square kilometer (km?) 0.3861 square mile
liter (L) 0.2642 gallon
cubic meter per second (m?/s) 35.31 cubic foot per second
gram (g) 0.002205 pound
kilogram (kg) 2.205 pound
megagram (Mg) 1.102 ton, short

In this report, temperature is reported in degrees Celsius (°C), which can be converted to degrees Fahrenheit (°F) by using
the following equation:

°F = 1.8(°C) + 32
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VERTICAL DATUM

Sea level: In this report, “sea level” refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic
datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called
Sea Level Datum of 1929.

ABBREVIATED WATER-QUALITY UNITS

Chemical concentration and water temperature are given only in metric units. Chemical concentration in water is given in
milligrams per liter (mg/L) or micrograms per liter (ug/L). Milligrams per liter is a unit expressing the solute mass per unit
volume (liter) of water. One thousand micrograms per liter is equivalent to 1 mg/L. For concentrations of less than 7,000
mg/L, the numerical value is about the same as for concentrations in parts per million. Specific conductance is given in
microsiemens per centimeter (uS/cm) at 25°C, and oxidation-reduction potential (Eh) is measured in millivolts (mV).
Radioactivity is expressed in curies, which is the amount of radioactive decay that would produce 3.7x10'° disintegrations
per second or as picocuries per liter (pCi/L) or picocuries per gram (pCi/g), which is the amount of radioactive decay that
would produce 2.2 disintegrations per minute in a unit volume (liter) of water or mass (gram) of sediment. Chemical
concentration in bottom sediment is given in grams per kilogram (g/kg) or micrograms per gram (pg/g). Grams per kilogram
is equal to parts per thousands (ppt). Milligrams per kilogram and micrograms per gram are equal to parts per million (ppm).
Micrograms per kilogram are equal to parts per billion (ppb).
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Sorption of Uranium on Sediments exchange or uptake by plants (Landa, 1980). Uranium
is strongly sorbed on organic compounds or clays

Sorption of uranium on sediment is a probable (Ames and Rai, 1978). Uranium also can be sorbed on
fate of the dissolved uranium from mine-dewatering particles with amorphous iron-oxyhydroxide coatings,
effluent. The term sorption as used in this report and the amount of adsorption is greatest between pH
includes ion exchange of charged uranium complexes 5.5 and 8.5 (Langmuir, 1978; Hsi and Langmuir,
with other ions on clays (Beard and others, 1980), 1985). At intermediate Eh and neutral-to-alkaline pH
adsorption on the surfaces of particles, and reactions in the presence of phosphate or carbonate, however, the
with organic compounds that cause adsorption—ion formation of uranyl phosphate or carbonate complexes
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Figure 34. Comparison of oxidation-reduction potential measured in the alluvial aquifer with saturation indices of
selected uranium minerals calculated by using PHREEQE geochemical model. A, Reduced minerals; B, Oxidized
species (Parkhurst and others, 1980; Wanty and Goldhaber, 1992).
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can severely inhibit adsorption (Langmuir, 1978; Hsi
and Langmuir, 1985).

Forty-six sediment samples were collected for
analysis of radionuclides to characterize the occurrence
of radionuclides in the solid phase (Fisk and others,
1994). The most detailed sediment sampling was done
at the Chambers well cluster where 25 samples were
analyzed for gross alpha and gross beta activities. Two
of those samples were collected in the streambed, and
the other 23 samples were collected during drilling
of monitor wells. Of those 25 samples, 11 also were
analyzed for 234U, 238U, 22°Ra, 28Ra, 23°Th, #32Th, and
219p} (Fisk and others, 1994).

Grain-size distribution and distance from the
stream were determined for each sample from the
Chambers well cluster. Spearman rank correlation
coefficients were computed to compare the silt and
clay fraction of each sample (percent of sample, by
weight, passing through a screen with 0.062-mm
openings) and distance from the stream to radionuclide
activities (table 7). Positive correlation between trace-
element concentrations and silt and clay content is an
indication of sorption and usually results from the
greater surface area and surface charge for fine-grained
materials than for coarse-grained materials. Negative
correlations between activities and distance from the
stream indicate activities decrease with distance from
the stream; however, most of those correlations are
insignificant.

Twenty-one additional solid-phase samples near
the streambed were collected and analyzed for selected
radionuclides. These samples were collected several
miles from the mouth of Pipeline Arroyo to the Cedar
Point well cluster. Because of the strong correlation
between radionuclides from the 238U decay series and
the percent of silt and clay determined for the samples
from Chambers (table 7), these samples were wet
sieved before analysis by using small amounts of
distilled water. The fraction passing a 0.062-mm sieve,
including the distilled water, was then oven dried and
analyzed for selected radionuclides (Fisk and others,
1994).

Concentrations of uranium and thorium in fine-
grained sediment have a large variance and do not
show a strong relation to the presence of large uranium
concentrations in ground water. The mass of a given
radionuclide in a volume of typical saturated sedi-
ment from the basin, however, is much greater in
the sediment than in the water of the adjacent pore
space. Contaminated sediment samples, therefore, are
difficult to distinguish from sediment samples with

uranium from natural sources. For example, assuming
a porosity of 0.4, a density of sediment of 2.65 g/cm?,
and a uranium concentration of 2.5 ug/g (the mean of
these 21 samples), the sediment in contact with a liter
of water would have a total mass of uranium of about
10,000 pg. If all the uranium in solution in a liter of
ground water having a concentration of 1,000 pg/L
(the mean concentration of uranium in treated mine
effluent) were to sorb onto the sediment, the con-
centration would increase from 2.5 to 2.75 ug/g

or 10 percent. That change is within the error of
measurement for radionuclides in the solid phase

and is probably well within natural variation. Sorption
of all the uranium in several pore volumes of ground
water with large uranium concentrations, therefore,

is necessary to cause a measurable increase in the
solid-phase concentration of uranium.

The activity ratio of uranium to thorium (U/Th) in
the 238U decay series was used to investigate uranium
sorption on sediments. The ratio was calculated by
averaging the concentrations of 238U and 2*4U and then
dividing by the concentration of 2*°Th. Over geologic

Table 7. Spearman rank correlations of solid-phase
radionuclide concentrations to percent fines, horizontal
distance from the stream, and vertical distance below the
streambed, Puerco River Basin, Arizona and New Mexico

[Percent fines is percent of sample, by weight, that passes through a
0.062-millimeter sieve]

Correlation coefficients

Num-
ber Hori-
of Per- zontal  Vertical
sam- cent dis- dis-
Constituent ples fines tance tance
Gross alpha ............... 25 0.63 -0.24 0.02
Gross beta ...........c...... 25 52 -27 -39
Uranium—238 ............ I 87 245 I8
Uranium-234............ no e -29 31
Thorium-230 ............. mo les 10 09
Thorium—232 ............ 1 257 07 17
Radium—226............. 1 L7 =17 s
Radium—226............ I 254 13 35
Lead—210 v I 36 49 27

IRelation is significant at a 95-percent confidence level.
ZRelation is significant at an 80-percent confidence level.

§6 Effects of Uranium-Mining Releases on Ground-Water Quality in the Puerco River Basin, Arizona and New Mexico



time in a closed system, radionuclides in the same
decay series will reach secular equilibrium (a ratio of
1.0). At secular equilibrium, all nuclides in the series
will have the same activity; however, different radio-
nuclides have different chemical and physical proper-
ties. For example, in oxidized water at near-normal pH,
uranium is more mobile than thorium (Landa, 1980).
If significant amounts of uranium have either been
leached or have sorbed on sediment, the U/Th activity
ratio will deviate from secular equilibrium. A hypo-
thesis was proposed that near-channel sediments
downstream from the mines would have U/Th activity
ratios exceeding 1.0 and that sediments in areas not
affected by mine-related releases of radionuclides
would have U/Th activity ratios of about 1.0. Such a
pattern was observed for samples from the Cedar Point
well cluster (fig. 35). Only one of the nine samples
from Cedar Point, however, contained significant
excess uranium, and small-scale spatial variations
may be large.

Further evidence for uranium sorption is provided
by comparing U/Th ratios to total uranium concen-
trations (fig. 36). A significant positive correlation
(r=0.89; n=21) indicates that larger concentrations of
uranium correspond to samples with excess uranium
relative to thorium. A more extensive sediment-
sampling effort would be necessary to describe the
spatial distribution of sediments containing excess
uranium in the Puerco River Basin. These data, how-
ever, offer additional evidence that uranium sorption
has occurred in the sediments and that sorption may be
associated with near-channel sediments.

EFFECTS OF URANIUM-MINING
RELEASES ON GROUND-WATER
QUALITY

Determination of Sources of Uranium in
Ground Water by Using Uranium-Isotope
Activity Ratios

Uranium isotopes were used to distinguish sources
of uranium derived from mining activities as opposed
to uranium derived from natural sources in the Puerco
River Basin. The 238U decay series contains two
isotopes of uranium—?23*U and 24U (fig. 5). Uranium-
isotope activity ratios (33*U/238U) are a useful conserva-
tive tracer in certain hydrologic systems and have been
used to obtain information on sources of water, mixing
characteristics, and circulation patterns (Osmond

and Cowart, 1976; 1982). The minor mass difference
between 238U and 23*U precludes significant isotopic-
fractionation effects during chemical reactions. The
activity ratio of ground water, however, varies consid-
erably because during the decay of 238U to 234U, the
uranium atom recoils following the emission of an
alpha particle. This phenomenon, known as alpha
recoil, causes destruction to the mineral lattice and may
position the 23U in an unstable lattice configuration
near the solid-liquid interface where it is more vulner-
able to leaching (Osmond and Cowart, 1976; 1982).

In most unweathered rock, the 234U/2*8U activity
ratio is close to secular equilibrium, which corresponds
to a value of 1.0. The degree to which excess U may
build up in solution is a function of the original activity
ratio of the water and the rock, the leach rate, and the
length of time the water has been in contact with the
rock (Barr and others, 1978). Uranium disequilibrium
between liquid and solid phases increases with length
of ground-water residence time under reducing condi-
tions (Frohlich and others, 1984). A significant degree
of fractionation depends on a slow leach rate, a reduced
environment, and for the 234U daughter to stay in solu-
tion (Rich Wanty, geochemist, USGS, written com-
mun., 1992). As the activity ratio in water becomes
gradually enriched in 234U, depletion of 28U may not
be significant in the host rock because the mass of
uranium leached from the rock is small in proportion to
the total uranium in the rock. The possibility of frac-
tionation caused by geochemical processes exists but is
considered unimportant (Chatham and others, 1981);
therefore, once uranium is in solution and moves away
from its source, the activity ratio is unaffected by dilu-
tion (as long as the dilution water contains no uranium
of its own), precipitation, or changes in chemical state.
Mixing with a second source of dissolved uranium
would result in a value intermediate to the two end
points.

Water samples from the Puerco River Basin were
not collected before uranium mining (Wirt and others,
1991); therefore, background activities of uranium
isotopes in the alluvial aquifer downstream from the
mouth of Pipeline Arroyo are not known. In this study,
several types of reference data were used to estimate
uranium-isotope activity ratios of mine-dewatering
effluent in the Church Rock mining district and to
evaluate background conditions in the alluvial aquifer.
Streamflow samples and samples from hand-driven
wells were collected near a uranium mine that was dis-
charging effluent near San Mateo, New Mexico, in
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order to sample an environment analogous to the
Puerco River during mine dewatering. The San Mateo
Mine is in the Grants Mineral Belt in the drainage of
the nearby Rio Puerco (not the Puerco River that is the
focus of this study). The Rio Puerco drains the east
slope of the Continental Divide and is tributary to the
Rio Grande (fig. 37). The Rio Puerco Basin is geolog-
ically and geographically similar to the Church Rock
reach of the Puerco River. At the time of sampling in
May 1990, the mine near San Mateo was pumping
water from the Westwater Canyon Member of the
Morrison Formation and discharging to Arroyo Chico,
a tributary of the Rio Puerco. Additional samples were
collected from runoff and from ground water upstream
from the mouth of Pipeline Arroyo and from tributaries
to the Puerco River that were unaffected by mining.
Those samples were used to establish background

Yo
e \

uranium concentrations and background activity ratios
in the basin.

Conceptual Model for Effects of Mining
on Uranium-Isotope Activity Ratios

Before mining began, the uranium-isotope activity
ratio of ground water in the Dakota and Morrison
Formations surrounding the ore deposits was probably
similar to that of ground water from other bedrock
aquifers in the region. Activity ratios for samples from
six bedrock wells measured in this study, believed to be
unaffected by mining, ranged from 2.0 to 6.7, had a
median activity ratio of 3.2, and a median dissolved-
uranium concentration of 2.5 pug/L. On the basis of
these results, the assumption was made that before
mining began, ground water in the bedrock aquifer near
the ore bodies had an activity ratio of 2.0 or greater
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and generally had small concentrations of dissolved
uranium. In contrast—as supported by muitiple lines of
evidence presented below in this section—mine efflu-
ent had an activity ratio of about 1.0. This hypothesis is
reasonable in that highly evolved waters approaching
chemical equilibrium are commonly enriched in 234U
because of preferential leaching from the host rock.
Additionally, Chatham and others (1981) report that
concentrations of dissolved uranium in reduced ground
waters near uranium deposits rarely exceed 1 pg/L.

Mining processes changed the reducing environ-
ment surrounding the ore body by introducing oxygen
to the subsurface through a network of mine shafts and
tunnels as sediments were dewatered. Water levels
declined 81 m between 1968 and 1978 in an abandoned
mine shaft near Pipeline Arroyo (Hiss, 1977; Stone and
others, 1983). The increase in oxygen caused uranium
to dissolve to an average concentration of 7.0 mg/L in
raw mine water (Gallaher and Cary, 1986), which is an
increase of more than three orders of magnitude. The
activity ratio of the newly dissolved uranium would
have been essentially the same as in the host rock
because the uranium would have dissolved rapidly
without preference for 24U over 238U. This hypothesis
is supported by Osmond and Cowart (1977) and
Cowart and Osmond (1980). In a similar ground-
water environment characterized by large concentra-
tions of rapidly dissolving uranium, Osmond and
Cowart (1977) and Cowart and Osmond (1980)
predicted the activity ratio of dissolved uranium to
be near 1.0. Treatment practices initiated in the late
1970's to remove radium and uranium from mining
effluents would not have had a significant effect on
the activity ratio.

As the mine-dewatering effluent was discharged to
Pipeline Arroyo and travelled down the Puerco River
channel, the dissolved uranium would have partitioned
between the solid and liquid phases. Some uranium
probably sorbed on the fine-grained silts and clays
of the streambed, and some uranium infiltrated the
shallow alluvial aquifer and mixed with naturally
occurring uranium already in the aquifer. Because of
the large volume of mine-dewatering effluent released
from 1967 through 1986 (Van Metre and Gray, 1992),
uranium in the streambed sediment and shallow
ground water downstream from Pipeline Arroyo
should have the activity ratio of the mine water.
Although the concentration of dissolved uranium in the
alluvial aquifer could have changed considerably due
to dilution of mine effluent with native waters, isotopic

fractionation of uranium due to alpha recoil would

be insignificant over such a brief time. Ground water
containing uranium from mine-dewatering effluent,
therefore, should have a significantly smaller activity
ratio than that of ground water with naturally occurring
uranium.

Activities of uranium, radium, and gross alpha
were measured frequently in mine effluent and stream-
flow in the Puerco River during the 1970°s and 1980’s;
however, only one sample is known to have been
analyzed for the dissolved isotopes of 24U and #*¥U
during mine dewatering. That sample was collected
from the Puerco River several kilometers below the
mouth of Pipeline Arroyo on December 1, 1983, and
had an activity ratio of 1.07 and a dissolved-uranium
concentration of 1,330 ug/L (David Baker, NMED,
written commun., 1989). That sample is perhaps
the strongest evidence that mine-dewatering effluent
from the Church Rock Mining District contained
large concentrations of dissolved uranium with a
uranium isotope-activity ratio near 1.0.

Spatial and Temporal Distribution of
Uranium-Activity Ratios

Samples were collected to determine spatial and
temporal variations in uranium concentrations and
activity ratios in mine effluent, streamflow, and ground
water. Sample sites fall into two categories—(1) sites
along the Puerco River below Pipeline Arroyo that
could have been affected by mining and (2) back-
ground sites. Background sampling sites in the Puerco
and Little Colorado River Basins include Black Creek,
South Fork of the Puerco River, North Fork of the
Puerco River (above Pipeline Arroyo), Little Colorado
River above Woodruff, and Zuni River (figs. 1, 37).
The Rio Puerco above Arroyo Chico in the Rio Puerco
Basin also was sampled (fig. 37; table 8).

Samples collected in May 1990 from an active
uranium mine in a neighboring drainage provide addi-
tional evidence that mine effluent from the Church
Rock mines had an activity ratio near 1.0. The activity
ratios in two uranium-mine effluent samples collected
from Arroyo Chico, which is in the Rio Puerco drain-
age below the mine-dewatering discharge point for the
San Mateo mine, were 1.07 and 1.06. Concentrations
of dissolved uranium for the two samples were 390 and
480 pg/L. The source of the water in Arroyo Chico was
pumped ground water from the Mount Taylor mine,
which mined the same geologic formation as the
Church Rock mines. The activity ratios of the Arroyo
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Chico samples are identical to activity ratios of the
samples taken from the Puerco River in December
1983 (1.07). In contrast, a runoff sample collected from
the Rio Puerco just upstream from the confluence with
Arroyo Chico had an activity ratio of 1.65 and a
concentration of dissolved uranium of 5.1 pg/L. A
background hand-driven well at the same location
had an activity ratio of 1.81 and a concentration of
dissolved uranium of 13 pg/L.

Five background samples collected from hand-
driven wells in the Puerco and Little Colorado River
Basins (table 8) had a median uranium-isotope activity
ratio of 1.55. The largest concentration of dissolved
uranium for these five samples was 13 pg/L. The
activity ratio for samples from 16 wells that may
represent parts of the alluvial aquifer unaffected by
mining ranged from 1.50 to 2.0 and had a median of
1.61. The maximum concentration of dissolved ura-
nium for these alluvial wells was 14 ug/L. In general,
uranium-isotope activity ratios of background water
samples were significantly higher than mine effluent
and generally had values of 1.5 or larger and concen-
trations of less than 13 pg/L of dissolved uranium.

Samples from streamflow, hand-driven wells, and
near-stream alluvial wells that were collected down-
stream from Pipeline Arroyo in the Puerco River Basin
had activity ratios that ranged from 1.0 to greater than
1.5. Samples that had activity ratios between 1.0 and
1.5 are assumed to have been affected by mining.
Those samples that had activity ratios near 1.0 are
assumed to have derived all or most of their uranium
from mining sources, and those samples that had higher
values were assumed to have derived their uranium
from a combination of mining and natural sources.
Samples that had activity ratios greater than 1.5 are
assumed to have derived all of their uranium from
natural sources. Fourteen streamflow samples from the
Puerco and Little Colorado Rivers collected from 1988
until 1991 had activity ratios from 1.16 to 2.25 and had
a median value of 1.4. This is similar to a range in
activity ratios reported by Scott (1982) for major rivers
of the world of from 1.1 to 2.0 with an average of about
1.2 to 1.3. All 14 samples had dissolved uranium con-
centrations less than 26 pug/L (table 8). Twenty-six
samples were collected from hand-driven wells in the
Puerco River streambed below the mouth of Pipeline
Arroyo. The activity ratios for these samples ranged
from 0.97 to 1.60, and the concentrations of dissolved
uranium ranged from <1.0 to 650 pg/L. Uranium con-
centrations were inversely correlated with activity
ratios for these samples (fig. 38) as shown by compar-

ison of uranium concentrations and activity ratios
under the Puerco River (figs. 26, 28, and 39). Wells
CON-3 and WIN-3U are shallow wells near the
stream in the Church Rock reach that are known to
have been contaminated by mine-dewatering effluent
(Gallaher and Cary, 1986). In 1989, activity ratios for
these two wells were 1.1 and 1.2, respectively. Several
other wells also had smaller activity-ratio values and
larger concentrations of dissolved uranium. Well
GAL-3 had a dissolved-uranium concentration of
39 pg/L and an activity ratio of 1.2. Well AD-3 had a
mean activity ratio of 1.1 and a mean uranium concen-
tration of 54 ug/L (n = 3). Data from monitor wells in
the alluvial aquifer downstream from Gallup indicate
that uranium from mine-dewatering sources occurs
only in hand-driven wells and in a few shallow near-
channel wells. This finding supports conclusions about
the extent of infiltration and mixing from the stream
and the long-term flow directions between the stream
and aquifer in the Manuelito and Sanders reaches.
Wells in the alluvial aquifer in Arizona that had
significant temporal variations in uranium-isotope
activity ratios (notably, CW-3, AD—4, CP—4, QR—I,
QR-2, and QR—3) are within about 30 m of the Puerco
River and have received some recharge from anthropo-
genic sources as indicated by %S, §'*0, and 3D anal-
yses. Activity ratios for these wells ranged from 1.16 to
2.20. Significant temporal variations in activity ratios
indicate nonsteady-state water-quality conditions and
mixing of different sources of uranium in ground water
near the stream. Many near-stream samples from the
alluvial aquifer deviate significantly from background
values and appear to contain uranium from mine efflu-
ent. Sixteen of 26 USGS and NMED cluster wells sam-
pled repeatedly from 1988 to 1991 had no significant
temporal variations in activity ratios, which indicate
that mixing of uranium had reached steady-state
conditions at most of the sites during this time period.

Relation Between Uranium-Mining Releases
and Ground-Water Quality

Uranium-mine dewatering increased dissolved
gross alpha, gross beta, uranium, and radium activi-
ties and concentrations of dissolved selenium and
molybdenum in the Puerco River from 1967 until
1986 (Gallaher and Cary, 1986; Van Metre and Gray,
1992). Increased activities of radionuclides and
concentrations of dissolved constituents extended as
far downstream as Chambers (fig. 40). The occurrences
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Table 8. Uranium-isotope data from mine-effluent samples, background samples, and samples collected downstream from
Pipeline Arroyo for surface water and shallow ground water, Little Colorado River Basin, Puerco River Basin, and Rio Puerco
Basin, Arizona and New Mexico

[pCi/L, picocuries per liter, pg/L, micrograms per liter; <, less than; ---, no data]

Natural
Uranium—234, Uranium—238, uranium,
dissolved dissolved dissolved Uranium—234/
Sample site Date (pCi/L) (pCi/L) (ug/L)’ Uranium—238
Mine effluent
Arroyo Chico near San Mateo ...........cccceveeiuenene 05-01-90 150 140 390 1.07
Arroyo Chico near mouth ..........ccccoevevecncncnnnes 05-18-90 170 160 480 1.06
PUETCO RIVET? ... esese e sesresens 12-01-83 470 440 1,300 1.07
Background surface water
Ri0 PUETCO......veeceeeeteereeeeeeere e rereerrens 05-18-90 2.8 1.7 5.1 1.65
Little Colorado River above Woodruff ............... 08-30-88 1.2 9 2.7 1.33
ZUNT RIVET ..ottt e ras s s 09-06-91 4 3 1.0 1.33
Background hand-driven wells
Rio Puerco DP.........ooviveeeeireeeseece e see s eenennes 05-18-90 7.8 4.3 13 1.81
Black Creek DP........ccovvrvenerieicicrrneceeseensennens 05-16-90 .85 .55 1.7 1.55
South Fork DP, Puerco River ........cccccocevevueenenn 11-02-90 2.2 1.7 5.1 1.29
North Fork DP, Puerco River ........cccoeevvveenenne 03-30-89 32 2.1 6.3 1.52
Do. 11-18-89 24 1.5 6.7 1.60
Background wells upstream from Pipeline Arroyo
NF Well, Puerco RIVEr.......ccccocveveeevieeerrseeenne. 11-18-89 5.7 3.6 11 1.58
21007, 500 | 6 OO UUUOOOON 01-10-89 4.4 2.8 8.4 1.57
Background wells in alluvial aquifer underlying the Puerco River
Paulsell Ranch well, Petrified Forest................... 07-14-89 4.1 2.6 7.8 1.58
Petrified Forest well NO. 2 .......oovveevverieieeieens 01-20-89 .20 .10 <3 2.00
CW=2 ..eeeteeteeesreentetestestestne st eaesresesrasensansens 12-09-88 35 2.2 6.6 1.59
Do. 12-09-88 4.0 2.4 6.7 1.67
Do. 11-16-89 490 420 <10 e
Do. 05-02-90 4.1 2.7 7.6 1.52
Do. 05-02-90 73 4.0 15 1.83
CW=T et eete st ve st ae s e sseansnes 12-06-88 3.7 23 7.2 1.61
Do. 11-14-89 3.7 2.1 2.2 1.61
Do. 11-01-90 3.6 24 6.6 1.50
CW=8 ...eeitrereereeireerecsreesresnnesssesssessaessssresseenes 120688 4.1 2.5 7.3 1.64
Do. 11-14-89 3.7 23 33 1.61
Do. 10-18-90 39 2.6 6.7 1.50
AD Lt s 11-14-89 7.7 5.0 6.2 1.54
Do. 05-01-90 5.8 33 8.9 1.76
Do. 10-13-90 4.3 2.6 7.2 1.65
AD 5 et e n 07-13-89 4.1 2.7 8.1 1.52
Do. 11-13-89 4.0 2.5 7.0 1.60
Do. 05-04-90 4.0 24 7.0 1.67
Do. 10—-19-90 4.3 2.8 83 1.54

See footnotes at end of table.
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Table 8. Uranium-isotope data from mine-effluent samples, background samples, and samples collected downstream from
Pipeline Arroyo for surface water and shallow ground water, Little Colorado River Basin, Puerco River Basin, and Rio Puerco
Basin, Arizona and New Mexico—Continued

Natural
Uranium—234, Uranium—238, uranium,
dissolved dissolved dissolved Uranium-234/
Sample site Date (pCi/L) (pCi/L) (ng/L)? Uranium—-238
Background wells in alluvial aquifer underlying the Puerco River—Continued
Sanders School Well .......oooveceeienicrieieecienenene 08-10-88 6.5 43 13 1.51
Do. 08-10-88 6.3 4.4 13 1.43
Do. 01-20-89 6.4 4.5 14 1.42
Do. 05-09-950 6.3 4.2 9.2 1.50
ADOT inspection Well ...........ccceovvrerecocrnnennnn. 05-09-90 5.1 3.0 6.1 1.70
CP1 ettt sreens e ese b eae s b s s ns e 09-21-89 0.20 <0.10 <3 ——
Do. 05-03-90 .20 .10 <1.0 2.00
Do. 10-12-90 .10 <.10 <10 -
CP=2..eeeeeerrteettrsersese s raeeve st sse e sare st s sraesseean 09-21-89 2.6 1.4 4.2 1.86
Do. 05-03-90 2.5 1.6 6.9 1.56
Do. 10-12-90 32 1.9 6.0 1.68
(03 o T OO 09-21-89 32 2.1 6.3 1.52
Do. 10—-17-90 29 1.8 5.2 1.61
(03 . OSSO 09-20-89 33 1.9 5.7 1.74
Do. 05-07-90 33 2.1 4.2 1.57
Do. 10-17-90 35 2.2 6.1 1.59
CP—6..oeeeeeeeeeteeees et as e e s e erenns 09-20-89 3.6 2.1 6.3 1.71
Do. 10-12-90 3.0 1.8 5.7 1.67
MAN2 et rae e e sseeseessssas s asaeane 06-06-90 7.3 4.5 8.8 1.62
Do. 10-10-90 7.5 4.5 13 1.67
MANS ettt sr e rn 06-06-90 6.4 3.7 <1.0 1.73
Do. 10-11-90 6.1 3.6 9.4 1.69
Streamflow downstream from Pipeline Arroyo
Puerco River near Church Rock 08-15-90 1.2 1.0 3.1 1.20
Puerco River near Manuelito ......... 04-05-89 2.1 1.5 4.5 1.40
Do. 08-14-90 1.5 .90 1.9 1.66
Do. 08-15-90 1.0 .80 2.2 1.25
Puerco River near Chambers..........ccccoeveevenrierennn 08-10-88 7.1 54 16 1.31
Do. 07-11-90 9.3 6.8 13 1.37
Little Colorado River near Joseph City............... 080288 10 8.6 26 1.16
Little Colorado River near Grand Falls............... 03-05-91 2.5 1.7 5.1 1.47
Do. 03-05-91 2.3 1.5 4.5 1.53
Little Colorado River near Cameron................... 08-04-88 8 .50 1.5 1.60
Do. 03-07-91 2.1 1.5 4.5 1.40
HBSW—1, HOIbrooK........c.ceeeevveemeresieneerecrnnenenne 05-15-90 1.8 .80 <1.0 2.25
Puerco River at Sanders........cccceveereeeeiiereeseennenes 03-09-90 6.5 4.2 13 1.55
Puerco River near Lupton at Route 66 bridge..... 03-08-90 3.7 2.3 6.9 1.61
Hand-driven wells downstream from Pipeline Arroyo
HOIBrooK DP .......covvrrereeretmrnririreennieiareeisans s 05-14-90 40 .30 <1.0 1.33
Navajo DP ....cooveireecrenieeeiriesereetsie e 06—-12-91 6.8 5.3 9.5 1.28

See footnotes at end of table.
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Table 8. Uranium-isotope data from mine-effluent samples, background samples, and samples collected downstream from
Pipeline Arroyo for surface water and shallow ground water, Little Colorado River Basin, Puerco River Basin, and Rio Puerco
Basin, Arizona and New Mexico—Continued

Natural
Uranium—234, Uranium-238, uranium,
dissolved dissolved dissolved Uranium—-234/
Sample site Date (pCiiL) (pCi/L) (ug/L)! Uranium-238

Hand-driven wells downstream from Pipeline Arroyo-—Continued

CDP—1..tiiieeerereeeeeree et ese s e este e sre s seaneaba s 08-11-88 6.8 6.3 19 1.08
Do. 12-07-88 7.1 73 19 97
Do. 11-16-89 6.8 5.2 7.2 1.31
Do. 10-17-90 12 11 20 1.09
CDP=2... ottt eereesseense e s st e esaesraenens 11-16-89 6.7 6.6 11 1.02
ADDP—L....octioiiteceeceeeieveeiee e sresaretr e s aesrsnens 05-15-90 32 29 68 1.10
CPDP—Lcecvieieeteerecere e svr e ser e sreeseeerenbaeans 11-17-89 10 89 18 1.12
Do. 10-16-90 19 14 36 1.36
CPDP—l....coiitiieiierreeeeeieecteeeresste s e seeeseeereesanens 11-17-89 10 89 18 1.12
Do. 10-16-90 19 14 36 1.36
CPDP-2.....oiieeeicteecteeeeeee e seteereeesveesseesseneens 05-16-90 8.7 7.7 20 1.13
QRDP......oeieeienrte ettt es s a e anaas 05-16-90 .90 .60 1.3 1.50
Do. 05-16-90 .80 .50 1.6 1.60
LPDP—1 ....oeeiieeresteteetesesresteaesreseasvesresveasesseens 11-17-89 94 7.7 11 1.22
Do. 10-16-90 2.7 1.9 7.8 1.42
Do. 06-11-91 7.8 6.1 7.6 1.27
MANDP— ....oooieeteteecrcerteetr e eerte st saenseneas 04-05-89 51 43 130 1.19
Do. 10-16-90 .60 .50 23 1.20
Do. 06-11-91 59 44 10 1.34
BRIDGE-83DP.......ocoeeirieertricrerreeraeense v, 10-16-90 5.6 43 11 1.30
Do. 06-11-91 18 15 44 1.20
GALDP—1 ...ttt erevesesnnan s 05-17-90 52 50 140 1.04
Do. 10-15-90 46 41 140 1.12
CONDP1 ....ooritiseieccteeeerrceraeseesnresaseesrannens 03-30-89 220 220 650 1.00
Do. 10-18-90 95 96 220 .99
Do. 06-10-91 45 42 130 1.07
Wells in alluvial aquifer downstream from Pipeline Arroyo
CONSD ettt et ste e s et ennans 01-11-89 320 290 900 1.10
WIN-3U ottt sneesesseseeseesressessasnnes 01-11-89 67 54 160 1.24
Do. 10-24-90 49 39 120 1.25
GAL3 ettt eneanns 01-12-89 15 13 39 1.15
Do. 10-24-90 15 12 27 1.25
AD 3o e 07-13-89 16 16 48 1.00
Do. 07-13-89 11 8.9 28 1.23
Do. 09-22-89 17 16 48 1.06
Do. 05-01-90 22 20 49 1.10
Do. 10-19-90 20 18 47 1.11

'Bold type indicates that natural uranium values were calculated from isotopic activities of uranium—234 and uranium—238.

2 Sample collected by New Mexico Environmental Improvement Division (Dave Baker, environmental engineer, written commun., 1989).
3Bureau of Land Management well at Lupton, Arizona.

4Analytical error suspected because of low-level uranium—234 and uranium-238.
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In the Sanders reach, infiltration of Gallup STP
wastewater and possibly mine-dewatering effluent is
indicated by ratios of stable isotopes. Infiltration of
uranium from mine-dewatering effluent is indicated by
analyses of uranium-activity ratios in samples from
hand-driven wells and a few shallow wells. Concentra-
tions of uranium and the depth to which uranium from
mine dewatering has penetrated the alluvial aquifer
also appear to be affected by the flow system and by
removal of uranium by sorption. Larger concentrations
of uranium were measured at the ADOT well cluster
than at other wells and hand-driven wells in the Sand-
ers reach. One well and one hand-driven well at
ADOT had large uranium concentrations (greater than
35 pg/L) and small uranium activity ratios. These
concentrations and ratios indicate the source of
uranium is mine-dewatering effluent. The ADOT
well cluster is the only cluster in the Sanders reach
where consistent downward gradients in water levels
were measured in near-channel wells.

Large radionuclide activities (in excess of MCL’s)
in wells completed in the Chinle Formation are not
associated with mining-related sources or the Puerco
River. Three independent pieces of information
support that conclusion. First, tritium activities in wells
completed in the Chinle Formation in the Sanders area
are less than 3 pCi/L and indicate that the water was
recharged prior to 1952 before uranium mining began
in the Puerco River Basin. Second, uranium-isotope
activity ratios in ground-water samples indicate that in
the Sanders area, mine-released uranium is confined to
a zone a few meters or less below and a few tens of
meters laterally from the stream channel and is not
found in the Chinle wells. Third, the radium activity
from well INDIAN RUINS and the gross alpha and
gross beta activities from well ADOT YARD (Fisk
and others, 1994) were higher than activities measured
in all alluvial aquifer samples from the Sanders reach
and were higher than activities measured in streamflow
in Arizona during mining (fig. 40).

SUMMARY

The Puerco River of Arizona and New Mexico is
an ephemeral stream that received effluent from mine-
dewatering operations from 1960 until 1961 and from
1967 until mining ceased in February 1986. Dissolved
gross alpha, gross beta, uranium, and radium activities
and dissolved molybdenum and selenium concentra-
tions were elevated in streamflow as far as 140 km

downstream from the mines. Mine dewatering released
an estimated 560 metric tons of uranium and 260 curies
of gross alpha activity to the river. Additionally, in
1979, a tailings-pond dike failed, releasing an
estimated 1.5 metric tons of uranium and 46 curies

of gross alpha activity to the Puerco River.

The distribution of uranium in ground water in the
alluvial aquifer downstream from the mines is related
to flow relations between the stream and alluvial aqui-
fer. Flow relations between the stream and aquifer were
evaluated for three hydrologically distinct reaches of
the Puerco River by using historical records of stream-
flow and mine-dewatering discharges; variations in
water levels; a numerical ground-water flow model;
and differences in isotopes of oxygen, hydrogen, tri-
tium, and sulfur; and proportions of major ions. In the
reach of the Puerco River from the mines to near
Gallup, New Mexico, flow during mine dewatering
was from the stream downward into the alluvium. The
largest concentrations of uranium in the alluvial aquifer
are found downstream from the mines in this reach.
Downward flow was partly caused by mine-dewatering
pumpage and associated drawdown in bedrock aquifers
underlying the alluvial aquifer. In the reach from
Gallup to near Lupton, Arizona, flow was predomi-
nantly toward the stream as indicated by upward water-
level gradients and by isotopes of oxygen, hydrogen,
and sulfur. Upward flow in the alluvial aquifer is
caused by upward leakage from underlying bedrock
aquifers. Uranium concentrations in wells in this reach
were small. In the reach from about 8 km upstream
from Sanders, Arizona, to about 4 km downstream
from Chambers, Arizona, vertical water-level gradi-
ents in near-channel wells were small, and flow was
toward the stream at certain times, and away from the
stream at other times. Larger uranium concentrations
occurred below the streambed at sites with downward
gradients in the alluvial aquifer near the stream than at
sites with no vertical or upward gradients. Water levels
were controlled by the elevation of the streambed
and by seasonal variations in evapotranspiration.

The interpretation of flow at one location was sup-
ported by the development of and simulations from
a two-dimensional ground-water flow model.

Measurement of ground water from 69 ground-
water sampling points in the Puerco River Basin from
1988-91 supports the following conclusions:

« Because water levels in the alluvial aquifer are
typically shallow—within about 0.6 m of the
elevation of the lowest part of the streambed—
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near-stream ground water potentially can be
affected by contaminants in streamflow.

» Except for several samples collected within several
meters of the streambed, ground-water samples
collected from the alluvial aquifer downstream
from Gallup, New Mexico, meet the MCL’s of the
USEPA for gross alpha and radium—226 plus
radium—228, and the proposed MCL for uranium.
Alluvial ground water, however, commonly
exceeds SMCL's of the USEPA for dissolved solids,
iron, and manganese, which are constituents that
are unrelated to mining releases.

« Concentrations of dissolved uranium and #34U/3%U
activity ratios in shallow alluvial wells as far
downstream as Chambers indicate some residual
contaminated water was still present in October
1990. Data indicate it is unlikely that radio-
nuclides released to the Puerco River by mining
could infiltrate to bedrock aquifers in the New
Lands area.

+ In 1990-91, shallow ground-water samples col-
lected beneath the streambed had smaller con-
centrations of dissolved uranium than in 1989.

+ Inparts of the alluvial aquifer unaffected by mining,
ground water contains less than 13 pg/L of
dissolved uranium.

» Natural sources of recharge include (1) direct infil-
tration of precipitation and runoff and (2) inter-
formational flow from the underlying bedrock
aquifer. Anthropogenic sources include (1) dis-
charge of sewage effluent and (2) historical
releases of mining effluent. Discharge from the
alluvial aquifer is predominantly by ET and to
streams.

« Extent and concentration of uranium is related to
(1) concentration of uranium in the Puerco River
during mining, (2) variation in mixing between
native ground water and recharge from stream-
flow, and (3) removal of uranium in solution by
sorption on sediments.

 Estimated total volume of uranium released by
mining activities was not found at predicted levels
in 1989-91. As indicated by the results of sample
analyses from the alluvial aquifer, sorption on sed-
iment is a probable fate of the missing uranium.

» Radionuclide concentrations and uranium-series
isotope ratios on sediment suggest that concen-
trations of radionuclides on sediment near the
channel are larger than on sediment away from the

channel. Improvements in water quality, therefore,
may be at the expense of sediment quality.
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