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SYMBOLS 

(The following symbols are listed in alphabetical order. Each symbol indicates the basic term usually 
represented, with no attempt to show the many and unavoidable duplicate uses . In the text, various 
subscripts are used in conjunction with these symbols to denote specific applications of the basic terms . 
A few of the more important combinations of this type are given; others are defined where they appear in 
the text. 

A Area of cross section through which flow occurs . 
a Distance from stream or drain to ground-water divide . 
e Base of natural (Napierian) logarithms, numerically equal to 2.7182818 . 
g Local acceleration due to gravity . 
h Head of water with respect to some reference datum,, 
I Hydraulic gradient. 
L Length (width) of cross section through which flow occurs . 
m Saturated thickness of an aquifer . 
m.' Saturated thickness of relatively impermeable bed confining an aquifer . 
P Coefficient of permeability of the material comprising an aquifer . 
P' Coefficient of vertical permeability of the material comprising a relatively 

impermeable bed that confines an aquifer . 
Q Rate of discharge, or recharge . 
r Radial distance from discharge or recharge well to point of observation . 
r� Effective radius of discharge or recharge well . 
S Coefficient of storage of an aquifer . 
s Change in head of water, usually expressed as drawdown, or recovery or 

buildup . 
s' Residual change in head of water, usually reserved for use in conjunction 

with the term, "drawdown". 
T Coefficient of transmissibility of an aquifer . 
t Elapsed time with respect to an initial reference . 
t' Elapsed time with respect to a second reference . 
V Volume . 
TV Rate of accretion or recharge to an aquifer . 
w Spacing of grid lines used to subdivide a region into finite squares . 
x Distance from stream or drain to point of observation . 
BE Barometric efficiency of an aquifer. 
TE Tidal efficiency of an aquifer. 
D(u) n Drain function of u, constant head situation . 
D(u) c Drain function of u, constant discharge situation . 
G(a) Well function of a, constant head situation . 
W(u) Well function of u, constant discharge situation . 
Jo (x) Bessel function of first kind, zero order. 
I0(x) Modified Bessel function of first kind, zero order . 
Yo(x) Bessel function of second kind, zero order . 
Ko(x) Modified Bessel function of second kind, zero order. 
a Bulk modulus of compression or vertical compressibility (reciprocal of the 

bulk modulus of elasticity) of the aquifer skeleton. 
v1 
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Bulk modulus of compression, or compressibility of water ; approximate 
value for average ground-water temperature is 3 .3 X 10- a in 2/lb . 

y Specific weight of a substance . 
70 Specific weight of water at a stated reference temperature ; numerically 

equal to 62.41b per cubic foot at 4°C or 39°F . 
0 Porosity of an aquifer. 

Density of a substance . 
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GROUND-WATER HYDRAULICS 

THEORY OF AQUIFER TESTS 

By J. G. FERRIS, D. B. KNOWLES, R. H. BROWN, an,, R . W. STALLMAN 

ABSTRACT 
The development of water supplies from wells was placed on a rational basis 

with Darcy's development of the law governing the movement of fluids through
sands and with Dupuit's application of that law to the problem of radial flow 
toward a pumped well . As field experience increased, confidence in the appli­
cability of quantitative methods was gained and interest in developing solutions 
for more complex hydrologic problems was stimulated . An important mile­
stone was Theis' development in 1935 of a solution for the nonsteady flow of 
ground water, which enabled hydrologists for the first time to predict future 
changes in ground-water levels resulting from pumping or recharging of wells . 
In the quarter century since, quantitative ground-water hydrology has been 
enlarging so rapidly as to discourage the preparation of comprehensive textbooks . 

This report surveys developments in fluid mechanics that apply to ground­
water hydrology . It emphasizes concepts and principles, and the delineation 
of limits of applicability of mathematical models for analysis of flow systems
in the field . It stresses the importance of the geologic variable and its role in 
governing the flow regimen . 
The report discusses the origin, occurrence, and motion of underground water 

in relation to the development of terminology and analytic expressions for selected 
flow systems . It describes the underlying assumptions necessary for mathema­
tical treatment of these flow systems, with particular reference to the way in 
which the assumptions limit the validity of the treatment . 

INTRODUCTION 
Lectures on ground-water hydraulics by John G. Ferris provide 

most of the source material for this paper, which was organized by 
Doyle B . Knowles . Subsequent refinements of concepts and stand­
ardization of nomenclature and method of presentation were accom-
plished by Russell H . Brown and Robert W. Stallman, with the 
important collaboration of Edwin W. Reed. Appropriate individual 
authorship is recognized for several sections of the text . 
The material presented herewith concerns the theory supporting 

many hydraulic concepts . Applications of the theory to field prob­
lems are to be shown in another report . 

69 
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AQUIFER TESTS-THE PROBLEM 
The basic objective of ground-water studies of the U.S . Geological

Survey is to evaluate the occurrence, availability, and quality of 
ground water. The science of ground-water hydrology is applied
toward attaining that goal . Although many ground-water investi­
gations are of a qualitative nature, quantitative studies are necessarily 
an integral component of the complete evaluation of occurrence and 
availability . The worth of an aquifer as a fully developed source of 
water depends largely on two inherent characteristics : its ability to 
store and its ability to transmit water. Furthermore, quantitative
knowledge of these characteristics facilitates measurement of hydro­
logic entities such as recharge, leakage, and evapotranspiration . 
It is recognized that these two characteristics, referred to as the coeffi­
cients of storage and transmissibility, generally provide the very foun­
dation on which quantitative studies are constructed . Within the 
science of ground-water hydrology, ground-water hydraulics methods 
are applied to determine these constants from field data . 
Ground-water hydraulics, as now defined by common practice, can 

be described as the process of combining observed field data on water 
levels, water-level fluctuations, natural or artificial discharges, etc.,
with suitable equations or computing methods to find the hydraulic
characteristics of the aquifer; it includes the logical extension of these 
data and computing methods to the prediction of water levels, to the 
design of well fields, the determination of optimum well yields, and 
other hydraulic uses-all under stated conditions . The selection of 
equations or computing procedures to be used for analysis is governed
largely by the physical conditions of the aquifer studies, insofar as 
they establish the hydraulic boundaries of the system . The extraor­
dinary variability in the coefficients of storage and transmissibility,
combined with the irregularities in the shape of flow systems encoun­
tered in many ground-water studies, precludes uninhibited support of 
calculated coefficients based on vague or meager data . One quanti­
tative test does not satisfy the demand for a quantitative study of an 
aquifer. It is merely a guidepost, indicator, or segment of knowledge,
which must be supported by additional tests. Often the initially
calculated results may require revision on the basis of the discoveries 
resulting from additional testing as the field investigation proceeds . 
Obviously the results from ground-water hydraulics must be com­

pletely in accord with the geologic characteristics of the aquifer or 
of the area under investigation . Circumstance frequently demands 
that tests be conducted without prior knowledge of the geology in the 
vicinity of the test site . To varying degrees, lack of knowledge of 
the geology in most cases reduces the reliability of the test results 
to a semiquantitative category until more adequate support is found. 
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The principal method of ground-water hydraulics analysis is the 
application of equations derived for particular boundary conditions . 
The number of equations available has grown rapidly and steadily 
during the past few years. These are described in a wide assortment 
of publications, some of which are not conveniently available to many
engaged in studies of ground-water hydraulics . The essence of each 
of many concepts of hydraulics is presented and briefly discussed, 
but frequent recourse should be made to the more exhaustive treat­
ment given in the cited reference. 
Where the definition of a hydraulics or ground-water term is con­

sidered necessary, it is stated where the term first appears, and the 
symbol and units in which the term is ordinarily expressed are given . 
Much of the terminology is assembled under "Symbols," following
the table of contents . 

DARCY'S Law 
Hagen (1839) and Poiseuille (1846) were the first to study the law 

of flow of water through capillary tubes. They found that the rate of 
flow is proportional to the hydraulic gradient . Later Darcy (1856) 
verified this observation and demonstrated its applicability to the 
laminar (viscous, streamline) flow of water through porous material 
while he was investigating the flow of water through horizontal 
filter beds discharging at atmospheric pressure . He observed that, 
at low rates of flow, the velocity varied directly with the loss of head 
per unit length of sand column through which the flow occurred and 
expressed this law as 

__P_h 
v 

l 

in which z is velocity of the water through a column of permeable
material, h is the difference in head at the ends of the column, 
l is the length of the column, and P is a constant that depends on the 
character of the material, especially the size and arrangement of the 
grains . 
The velocity component in laminar flow is proportional to the 

first power of the hydraulic gradient . It can be seen, therefore, that 
Darcy's law is valid only for laminar flow . The flow is probably 
turbulent or in a transitional stage from laminar to turbulent flow 
near the screens of many large-capacity wells. Jacob (1950) agrees 
with Meinzer and Fishel (1934) that because water behaves as a 
viscous fluid at extremelylow hydraulic gradients, it will obey Darcy's 
law at gradients much smaller than can be measured in the laboratory. 
He points out, however, that Darcy's law may not be valid for the 
flow of water in sands that are not completely saturated, or in ex­
tremely fine grained materials . 
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COEFFICIENTS OF PERMEABILITY AND TRANSMISSIBILITY 

The coefficient of permeability, P, of material comprising a for­
mation is a measure of the material's capacity to transmit water. 
The coefficient of permeability was expressed by Meinzer (Stearns, 
N.D., 1928) as the rate of flow of water in gallons per day through a 
cross-sectional area of 1 square foot under a hydraulic gradient of 1 
foot per foot at a temperature of 60°F . In figure 17, then, it would 
be the flow of water through opening A, which is 1 foot square. In 
field practice the ajdustment to the standard temperature of 60°F . 
is commonly ignored and permeability is then understood to be a 
field coefficient at the prevailing water temperature. Theis (1935)
introduced the term coefficient of transmissibility, T, which is expressed 

-, " 

. , _-/ . %ice ; ; 

Opening A, I foot square 

FIGURE 17 .-Diagram for ooeffleients of permeability and transmissibility. 
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as the rate of flow of water, at the prevailing water temperature, in 
gallons per day, through a vertical strip of the aquifer 1 foot wide 
extending the full saturated height of the aquifer under a hydraulic
gradient of 100 percent. In figure 17 it would be the flow through
opening B, which has a width of 1 foot and a height equal to the 
thickness, m, of the aquifer. A hydraulic gradient of 100 percent 
means a 1-foot drop in head in 1 foot of flow distance as shown sche­
matically by the pair of observation wells in figure 17 . It is seldom 
necessary to adjust the coefficient of transmissibility to an equivalent 
value for the standard temperature of 60°F., because the temperature 
range (and, hence, range in viscosity) in most aquifers is not large. 
The relation between the coefficient of transmissibility and the 
field coefficient of permeability, as they apply to flow in an aquifer, 
can be seen in figure 17 . 
A useful form of Darcy's law, which is often applied in studies of 

ground-water hydraulics problems, is given by the expression 
Qd=PIA 

in which Qd is the discharge, in gallons per day; P is the coefficient of 
permeability, in gallons per day per square foot ; I is the hydraulic 
gradient, in feet per foot ; and A is the cross-sectional area, in square
feet, through which the discharge occurs . For most ground-water 
problems, this expression can be more conveniently written as 

Qd= TIL 
in which Qd and I are defined as above, T is the coefficient of trans­
missibility in gallons per day per foot, and L is the width, in feet, of 
the cross section through which the discharge occurs . In many 
field problems it may be more practical to express I in feet per mile 
and L in miles. The units for T and Qd will remain as already stated . 
The coefficient of transmissibility may be determined by means of 
field observations of the effects of wells or surface-water systems on 
ground-water levels . It is then possible to determine the field coeffi-
cient of permeability from the formulaP=T/m. Physically, however, 
P has limited significance under these conditions . It merely represents 
the overall average permeability of an ideal aquifer that behaves 
hydraulically like the aquifer tested . 

In general, laboratory measurements of permeability should be 
applied with extreme caution . The packing arrangement of a poorly 
sorted sediment is a critical factor in determining the permeability, and 
large variations in permeability may be introduced by repacking a 
disturbed sample . Furthermore, a laboratory measurement of per­
meability on one sample is representative of only a minute part of the 
water-bearing formation . Obviously, therefore, if quantitative data 
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are to be developed by laboratory methods, it is desirable to collect 
samples of the water-bearing material at close intervals of depth and 
at as many locations within the aquifer as is feasible . 

COEFFICIENT OF STORAGE 

The coefficient of storage, S, of an aquifer is defined as the volume of 
water it releases from or takes into storage per unit surface area of the 
aquifer per unit change in the component of head normal to that 
surface. 
A simple way of visualizing this concept is to imagine an artesian 

aquifer which is elastic anduniform in thickness, andwhich is assumed, 
for convenience, to be horizontal . If the head of water in that aquifer
is decreased, there will be released from storage some finite volume of 
water that is proportional to the change in head . Because the aqui­
fer is horizontal, the full observed head change is evidently effective 
perpendicular to the aquifer surface. Imagine further a representative
prism extending vertically from the top to the bottom of this aquifer,
and extending laterally so that its cross-sectional area is coextensive 
with the aquifer-surface area over which the head change occurs . 
The volume of water released from storage in that prism, divided by
the product of the prism's cross-sectional area and the change in head, 
results in a dimensionless number which is the coefficient of storage. 
If this example were revised slightly, it could be used to demonstrate 
the same concept of coefficient of storage for a horizontal water-table 
aquifer or for a situation in which the head of water in the aquifer is 
increased . 
As with almost any concise definition of a basic concept it is neces­

sary to develop its full significance, its limitations, and its practical 
use and application through elaborative discussion . The coefficient 
of storage is no exception in this respect, and the following discussion 
will serve to bring out a few ideas that are important in applying the 
concept to artesian and water-table aquifers in horizontal or inclined 
attitudes . 
Observe that the statement of the storage-coefficient concept first 

focuses attention on the volume of water that the aquifer releases 
from or takes into storage . Identification and measurement of this 
volume poses no particular problem, but it should be recognized that 
it is measured outside the aquifer under the natural local conditions 
of temperature and atmospheric pressure ; it is not the volume that 
the same amount of water would occupy if viewed in place in the 
aquifer. 
Although the example used to depict the concept of the storage 

coefficient was arbitrarily developed around a horizontally disposed
artesian aquifer, the concept applies equally well to water-table aqui­
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fers and is not compromised by the attitude of the aquifer. This 
flexibility of application relies importantly, however, on relating the 
storage-coefficient concept to the surface area of the aquifer and to 
the component of head change that is normal to that surface. In 
turn this relation presupposes that the particular aquifer prism in­
volved in the movement of water into or out of storage is that prism 
whose length equals the saturated thickness of the aquifer, measured 
normal to the aquifer surface, and whose cross-sectional area equals 
the area of the aquifer surface over which the head change occurs . 
Furthermore, water moves into or out of storage in this prism in 
direct proportion only to that part of the head change that acts to 
compress or distend the length of the prism . In other words, the 
component of the head change to be considered in the release or storage 
of water is that which acts normal to the aquifer surface. The mathe­
matical models devised for analyzing ground-water flow usually re 
quire uniform thickness of aquifer. However, the storage coefficient 
concept, as defined here, applies equally well to aquifers that thicken 
or thin substantially, if the "surface area" is measured in the plane 
that divides the aquifer into upper and lower halves that are sym­
metrical with respect to flow. The imaginary prism would then be 
taken perpendicular to this mean plane of flow . 

TM AMT101" G"11 

Consider an artesian aquifer, in any given attitude, in which the 
head of water is changed, but which remains saturated before, during, 
and after the change . It is assumed that the beds of impermeable 
material confining the aquifer are fluid in the sense that they have no 
inherent ability to absorb or dissipate changes in forces external to 
or within the aquifer. Inasmuch as no dewatering or filling of the 
aquifer is involved, the water released from or taken into storage can 
be attributed only to the compressibility of the aquifer material and 
of the water. By definition the term "head of water" and anychanges 
therein connote measurements in a vertical direction with reference to 
some datum. In a practical field problem the change in head very 
likely would be observed as a change in water-level elevaiion in a well . 
The change in head is an indication of the change in pressure in the 
aquifer prism, and the total change in force tending to compress the 
prism is equal to the product of the change in pressure multiplied by 
the end area of the prism. Obviously this change in force is not af­
fected by the inclination of the aquifer, inasmuch as a confined pressure 
system is involved and the component of force due to pressure always 
acts normal to the confining surface. Thus any conventional method 
of observing head change will correctly identify the change in pressure 
normal to the aquifer surface,and may be considered as a component 
of head acting normal to that surface. 
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Examine figure 18A, which depicts, in schematic fashion, a hori­
zontal artesian aquifer. Shown within the aquifer is a prism of unit 
cross-sectional area and of height, m, equal to the aquifer thickness. 
If the piezo.-netric surface is lowered a unit distance, x, as shown, a 
certain amount of water will be released from the aquifer prism . This 
occurs in response to a slight expansion of the water itself and a slight 
decrease in porosity due to distortion of the grains of material com­
posing the aquifer skeleton . 
Summary statement.-For an artesian aquifer, regardless of its atti­

tude, the water released from or taken into storage, in response to a 
change in head, is attributed solely to compressibility of the aquifer 
material and of the water. The volume of water (measured outside 
the aquifer) thus released or stored, divided by the product of the head 
change and the area of aquifer surface over which it is effective, cor­
rectly determines the storage coefficient of the aquifer. Although 
rigid limits cannot be established, the storage coefficients of artesian 
aquifers may range from about 0 .00001 to 0 .001 . 

THE WATER-TABLE CASE 

Application of the storage coefficient concept to water-table aquifers 
is more complex, though reasoning similar to that developed in the 
preceding paragraphs can be applied to the saturated zone of an 
inclined water-table aquifer. Consider a water-table aquifer, in any 
given attitude, in which the head of water is changed. Obviously 
there will now be dewatering or refilling of the aquifer, inasmuch as it 
is an open gravity system with no confinement of its upper surface. 
Thus the volume of water released from or taken into storage must 
now be attributed not only to the compressibility of the aquifer mate­
rial and of the water, in the saturated zone of the aquifer, but also to 
gravity drainage or refilling in the zone through which the water 
table moves. The volume of water involved in the gravity drainage 
or refilling, divided by the volume of the zone through which the 
water table moves, is the specific yield . Except in aquifers of low 
porosity the volume of water involved in gravity drainage or refilling 
will ordinarily be so many hundreds or thousands of times greater 
than the volume attributable to compressibility that for practical 
purposes it can be said that the coefficient of storage equals the specific 
yield . The conventional method of measuring change in head by 
observing change in water-level elevation in a well evidently identifies 
the vertical change in position of the water table. In other words, 
head change equals vertical movement of the water table. It can 
be seen that the volume of the zone through which the water table 
moves is equal to the area of aquifer surface over which the head 
change occurs, multiplied by the head change, multiplied by the cosine 
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Unit cross-sectional area 

A . ARTESIAN AQUIFER 

Unit cross-sectional area 

Water table 

B. WATER-TABLE AQUIFER 
FIGURE 18 .-Diagrams for coefficient of storage . 

of the angle of inclination of the water table. The product of the last 
two factors is the component of head change acting normal to the 
aquifer surface. The importance of interpreting correctly the phrase 
"component of head change" which appears in the definition of the 
storage coefficient cannot be overemphasized . 
Examine figure 18B, which depicts, in schematic fashion, ahorizontal 
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water-table aquifer. Again a unit prism of the aquifer is shown, and 
it is assumed that the water table is lowered a unit distance, x. 
Usually the water that is thereby released represents, for practical 
purposes, the gravity drainage from the x portion of the aquifer 
prism. Theoretically, however, a slight amount of water comes 
from the portion of the prism that remains saturated, in accord with 
the principles discussed for the artesian case . 
Summary statement.-For a water-table aquifer, regardless of its 

attitude, the water released from or taken into storage, in response 
to a change in head, is attributed partly to gravity drainage or re­
filling of the zone through which the water table moves, and partly to 
compressibility of the water and aquifer material in the saturated 
zone . The volume of water thus released or stored, divided by the 
product of the area of aquifer surface over which the head change 
occurs and the component of head change normal to that surface, 
correctly determines the storage coefficient of the aquifer. Usually 
the volume of water attributable to compressibility is a negligible 
proportion of the total volume of water released or stored and can be 
ignored . The storage coefficient then is sensibly equal to the specific 
yield. The storage coefficients of water-table aquifers range from 
about 0 .05 to 0.30. 

ELASTICITY OF ARTESIAN AQUIFERS 

It has long been recognized that artesian aquifers have volume 
elasticity . D. G. Thompson, though not the first to publish on the 
subject, apparently was among the first in the Geological Survey to 
recognize this phenomenon . In studying the relation between the 
decline in artesian head and the withdrawals of water from the Dakota 
sandstone in North Dakota, Meinzer (Meinzer and Hard, 1925) came 
to the conclusion that the water was derived locally from storage. 
He found that the withdrawals could not be accounted for by the 
compressibility of the water alone, but might be accounted for by 
the compressibility of the aquifer. 

INTERNAL FOROW 

The diagram in figure 19A shows the forces acting at the interface 
between an artesian aquifer and the confining material . These forces 
may be expressed algebraically as 

s1=sm+Sk 

where s, is the total load exerted on a unit area of the aquifer, s� is 
that part of the total load borne by the confined water, and sk is that 
part borne by the structural skeleton of the aquifer. Assume that 
the total load (s t ) exerted on the aquifer is constant . If s. is reduced, 
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as a result of pumping, the load borne by the skeleton of the aquifer
increases and there is slight distortion of the component grains of 
material . At the same time, the water expands to the extent per­
mitted by its elasticity. Distortion of the grains of the aquifer 
skeleton means that they will encroach somewhat on pore space
formerly occupied by water. 

Conversely, if s. is increased, as in response to cessation of pumping, 
the piezometric head builds up again gradually approaching its 
original value, and the water itself undergoes slight contraction . 
With an increase in s� there is an accompanying decrease in sx and 
the grains of material in the aquifer skeleton return to their former 

Confining mo>'eriol_--

Grains of material 
constituting aquifer 
skeleton 

A MICROSCOPIC VIEW OF FORCES ACTING AT INTERFACE BETWEEN 
ARTESIAN AQUIFER AND CONFINING MATERIAL 

Pumped well 

Abrupt lowering
Dashed lines denote of water level 
bowed confining loyer, representing piezometric
highly exaggerated surface, lower aquifer 

B . DIAGRAM SHOWING THE EFFECT ON A DEEP ARTESIAN AQUIFER 
OF PUMPING FROM A SHALLOW ARTESIAN AQUIFER 

FIGU$Z 19:Diagrams for elastic phenomena in artesian aquifers . 
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shape. This releases pore space that can now be reoccupied by water 
moving into the part of the formation that was influenced by the 
compression. 

TRANSMISSION OF FORCES BETWEEN AQUIFERS 

It has been observed in some places that a well pumping from an 
aquifer affects the water level in a nearby well that is screened in a 
deeper or shallower artesian aquifer. Consider the case shown in 
figure 19B. The well screened in the upper aquifer, for convenience 
depicted as artesian, is pumped and the water level in the well screened 
in the lower aquifer abruptly declines when pumping begins . As 
pumping continues, the water level of the lower aquifer ceases to 
decline and gradually recovers its initial position . Altbough not 
proved, a logical explanation of this phenomenon may be as follows 
When the well in the upper aquifer begins pumping, there is a lowering 
of the pressure head in the vicinity of the pumped well . The decrease 
in pressure head unbalances the external forces that were acting on 
the upper and lower surfaces of the confining layer separating the two 
aquifers . In seeking a new static balance the confining layer will 
be bowed upward slightly thereby creating additional water storage 
space in the lower aquifer. The abrupt lowering of water level in 
the observation well represents the response to the newly created 
storage space and the reduction in the forces s, and s,, in the lower 
aquifer. The subsequent water-level recovery, approaching the 
initial position, represents filling of the new storage space and return 
to the original pressure head as water in the lower aquifer moves in 
from more remote regions. 
An interesting phenomenon that has been observed a few times, but 

for which no completely satisfactory explanation has yet been given, 
is that where pumping a well in one artesian aquifer causes a rise in 
the water level in a nearby well producing from a different artesian 
aquifer. (See Barksdale, Sundstrom, and Brunstein, 1936 ; and 
Andreasen and Brookhart, 1952 .) 

EFFECTS OF CHANGES IN LOADING 
EXCAVATIONS 

"Blowthroughs" may occur if deep excavations are made in the 
confining materials overlying an artesian aquifer that has a high 
artesian head . This is shown diagramatically in figure 20 . An 
excavation lowers the total load on part of the aquifer, which means 
that the forces s,, and s, (see fig. 19A), are now the dominant forces 
acting on the remaining layer of confining material, separating the 
bottom of the excavation from the top of the aquifer. Thus this 
layer will be bowed upward and if it is incompetent to contain the 
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FiaVR$ 20 .-Excavating in material overlying artesian aquifers, 

bowing forces, it will rupture in the form of "blowthroughs" or "sand 
boils." It is the practice in Holland (Krul and Liefrinck, 1946), 
where this situation is commonly encountered, to install relief wells 
to lower the artesian head until an excavation is refilled . 

MOVING RAILROAD TRAINS 

It is a frequent observation that a passing railroad train affects the 
water levels in nearby artesian wells . This is another demonstration 
of the elasticity of artesian aquifers . The fluctuation of water 
level in a well on Long Island, N.Y., produced by a passing railroad 
train is shown in figure 21A. As the train approaches the well, an 
additional load is placed on the aquifer. This load tends to compress
the aquifer, causing a rapid rise in water level that reaches a maximum 
when, or shortly after, the locomotive is opposite the well . As the 
aquifer becomes adjusted to the new loading, the water level declines 
toward its initial position. When the entire train has passed the well, 
the aquifer expands and the water level in the well declines rapidly 
and reaches a minimum shortly after the train has left the well . The 
water level then recovers toward its initial position as the aquifer 
again becomes adjusted to this new condition of loading. The time 
required for this cycle of events is commonly a few minutes. Thus 
the fluctuations in water levels caused by the passing of a train usually 
appear as vertical lines on water-stage recorder charts because the 
time scale ordinarily used is too small to record the fluctuations in 
any greater detail . 
The diagram in figure 21B shows, schematically, the effect of an 

instantaneously applied load on the pressure distribution within an 
elastic artesian aquifer and on the compression and subsequent ex­
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A . WATER-LEVEL FLUCTUATION IN WELL 5-201, LONG ISLAND, N .Y ., PRODUCED 
BY EAST-BOUND FREIGHT TRAIN, MARCH 21, 1938 

Land 
surface 

Confining
material 

Aquifer 

B. SCHEMATIC DIAGRAM SHOWING EFFECT OF INSTANTANEOUS APPLICATION 
AND SUBSEQUENT REMOVAL OF A SINGLE CONCENTRATED LOAD AT THE 
LAND SURFACE ON THE PRESSURE DISTRIBUTION AND ON THE COMPRESSION 
AND SUBSEQUENT EXPANSION OF AN ELASTIC ARTESIAN AQUIFER 

FIGURE 21 .-Effects of changes in loading on artesian aquifer . 

pansion of the aquifer after removal of the load . In discussing figure 
21B Jacob (1939) says : 

The upper diagrams a, b, c, and d show the distribution of pressure and the 
deflection of the upper surface of the aquifer at the respective times indicated on 
the time-pressure and time-distribution curves . The hydrostatic pressure in the 
aquifer is plotted as a full line, the upper limit of the confining layer arbitrarily 
being adopted as a base . The deflection curve for the upper surface of the aquifer 
is plotted as a dashed line . (The lower surface of the aquifer is assumed fixed .) 
These quantities are, of course, grossly exaggerated and are obviously plotted to 
quite different scales . The length of the arrows indicates the relative magnitude 
of the velocity of flow at various distances from the load . The lower diagram 
. . . shows, by the heavy full line, the change in pressure produced by the load, 
and, by the heavy dashed line, the deflection of the upper surface of the aquifer, 
plotted against time . 
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CHANGES IN ATMOSPHERIC PRESSURE 

It has often been observed that water levels in wells tapping artesian 
aquifers respond to changes in atmospheric pressure . An increase 
in the atmospheric pressure causes the water level to decline, and a 
decrease in atmospheric pressure causes the water level to rise . The 
diagrams shown in figure 22 will aid in explaining why this phenomenon 
is observed in artesian wells and why it ordinarily is not observed in 
water-table wells. 

IDEALIZED SECTION OF WATER-TABLE AQUIFER 

B, IDEALIZED SECTION OF ARTESIAN AQUIFER 

FiouRB 22.-Effect of atmospheric pressure loading on aquifers . 
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Referring to diagram A, figure 22, the force Apo, representing the 
change in atmospheric pressure, is exerted on the free water surface in 
the well . The same force Apo is also exerted simultaneously on the 
water table because there is direct communication between the 
atmosphere and the water table through the unsaturated pore space
of the soil . Thus the system of forces remains in balance and there is 
no appreciable change in water level in the well with changes in atmos­
pheric pressure . Some water-table wells exhibit barometric fluctua­
tions if the soil is frozen or saturated with water. But either of these 
conditions is, in effect, only a special case of the artesian condition. 

Referring to diagram B, figure 22, the force Apo, which again repre­
sents the change in atmospheric pressure, acts on the free water sur­
face in the well and also on the layer of material confining the artesian 
aquifer. Jacob (1940) in discussing this situation, reasons that baro­
metric fluctuations in a well are an index of the elasticity of the aquifer. 
In other words the confining layer, viewed as a unit, has no beam 
strength or resistance to deflection sufficient to withstand or contain 
any sensible part of an applied load . Thus in effect any charges in 
the atmospheric pressure loading on a confining layer are transmitted 
through it undiminished in magnitude . The forces acting at a point 
at the interface between the aquifer and the confining layer may then 
be drawn as shown in the inset sketch . Observe that the change in 
atmospheric pressure, Apo, is now accommodated by a change in stress 
in the skeleton of the aquifer, As,,, plus a change in the water pressure
in the aquifer, Op, applied over the percentage b of the interface, 
where the water is in direct contact with the confining layer. It is 
evident, therefore, that in an artesian situation there will be a pressure
differential between an observation well where the water is directly
subject to the full change in atmospheric pressure, and a point out in 
the aquifer where the water is required to accept only part of the 
change in atmospheric pressure . Thus barometric fluctuations will 
be observed in the well . Some wells near the outcrop of an artesian 
aquifer or near a discontinuity in the confining layer will show little or 
no response to atmospheric pressure changes. 

Although not associated with the elasticity of artesian aquifers, it is 
interesting to note that the phenomena of blowing and sucking wells, 
which exhibit a pronounced updraft or downdraft of air at the well 
mouth, may also be related to changes in atmospheric pressure . In 
areas where such wells have been noted, a bed of fine-grained, rela­
tively impermeable material usually lies some distance above the 
water table, thereby effectively confining, in the intervening un­
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saturated pore space, a body of air that can communicate with the 
atmosphere only through wells. 
The barometric efficiency of an aquifer may be expressed as 

BE='-
8b 

where s,, is the net change in water level observed in a well tapping the 
aquifer and sb is the corresponding net change in atmospheric pressure, 
both expressed in feet of water. It is frequently convenient to deter­
mine the barometric efficiency by plotting the water-level changes as 
ordinates and the corresponding changes in atmospheric pressure as 
abscissas on rectangular coordinate paper. The slope of the straight 
line drawn through the plotted points is the barometric efficiency. 

TIDAL FLUCTUATIONS 

OCEAN, LAKE, OR STREAM TIDES 

Water levels in wells near the ocean or near some lakes or streams 
exhibit semidiurnal fluctuations in response to tidal fluctuations . In 
wells tapping water-table aquifers, the water-level response to tidal 
fluctuations is due to actual movement of water in the aquifer. How­
ever, in wells tapping artesian aquifers that are effectively separated 
from the body of surface water by an extensive confining layer, the 
response is due to the changing load on the aquifer, transmitted 
through the confining layer with the changing tide . Thus with the 
rise of the tide the load on the aquifer is increased, which means that 
in the aquifer there will be compensating increases of the water pres­
sure and of the stress in the skeleton . Accordingly, the water-level 
rise in the well is but a reflection of the increased pressure head in the 
aquifer caused by the tidal loading . 
An artesian well that responds to tidal fluctuations should also 

respond to changes in atmospheric pressure, because the same mech-
anism in the aquifer produces both types of response . 
The tidal efficiency of an aquifer may be expressed as 

TE=L-S t 

where s. is the range of water-level fluctuation, in feet, in a well tap­
ping the aquifer, and s= is the range of the tide, in feet, corrected for 
density when necessary . There is a direct relation between the tidal 
efficiency or the barometric efficiency and the coefficient of storage. 
This relation will be discussed in a later section of this report . 
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Jacob (1950, p . 331-332) has derived expressions relating the tidal 
and barometric efficiency and the elasticity of an artesian aquifer. 
The two pertinent equations are 

«/e0
TE=1+a/B# 

and 

where a is the bulk modulus of compression of the solid skeleton of the 
aquifer, 0 is the bulk modulus of compression of water (reciprocal of 
the bulk modulus of elasticity), and 6 is the porosity of the aquifer. 
If these two equations are added it is evident that the sum of the 
barometric efficiency and the tidal efficiency equals unity, that is, 

BE+TE=1 
EARTH TIDES 

It has been observed that earth tides, which are caused by the 
forces exerted on the earth's surface by the sun and the moon, may 
produce water-level fluctuations in artesian wells . Water-level fluc­
tuations due to earth tides were apparently first observed by Klonne 
(1880) in a flooded coal mine at Dux, Bohemia. Such fluctuations in 
wells were first observed by Young (1913) near Cradock, South Africa . 
After the water levels have been adjusted for changes in atmospheric 
pressure the "high" water levels have been observed near moonrise 
and moonset and the "low" water levels near the upper and lower 
culminations of the moon. 
For a well near Carlsbad, New Mexico, and for a well at Iowa City, 

Iowa, Robinson (1939) showed that the water-level fluctuations, after 
adjustment for changes in atmospheric pressure, are coincident with 
the earth tides . The low water levels showed a tendency to precede 
the culmination of the moon, suggesting that the tide in the well 
precedes the culmination of the moon . 
According to Theis (1939), the possible effects of tidal forces acting 

either directly upon the water in the aquifer or upon the aquifer 
itself by varying the weight of the overburden could not account for 
the observed water-level fluctuations . The explanation for these 
water-level fluctuations is probably the distortion of the earth's 
crust. In this regard Theis (1939) states : 

As the crust of the earth in any given area rises and falls with the deformation 
of the earth caused by the tidal forces the crust is most probably alternately 
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expanded and compressed laterally-expanded when the earth bulges up and 
compressed when it subsides . Water in an artesian aquifer making up part of 
the crust shares in this deformation . In localities distant from points of outflow 
of the water, it is in effect confined without possibility of outflow within the period 
of tidal fluctuations . The slight hydraulic gradient imposed by the tidal distor­
tion is too small to cause effective release of pressure . Hence the aquifer is 
essentially sealed with respect to its included fluid. With the expansion of the 
aquifer incident to the tidal bulge the hydrostatic pressure falls and with its 
compression incident to tidal depression the hydrostatic pressure rises. 

EARTHQUAKES 

Fluctuations in water levels due to earthquakes have been observed 
in many wells equipped with water-stage recorders. Veatch (1906, 
p. 70) was apparently one of the first hydrologists in this country to 
recognize that some water-level fluctuations might be in response to 
earthquake disturbances . Subsequent investigators who have pub­
lished papers on the subject include H. T. Stearns (1928), Piper (1933), 
Leggett and Taylor (1935), LaRocque (1941), Parker and Stringfield 
(1950), and Vorhis (1953) . An earthquake may be defined as a 
vibration or oscillation of the earth's crust caused by a transient 
disturbance of the elastic or gravitational equilibrium of the rocks at 
or beneath the land surface. Earthquakes are classified as shallow 
or deep depending on the vertical position, relative to the land surface, 
of the source of the disturbance. Shock waves, propagated by an 
earthquake, travel through the earth and along the earth's surface. 
Because the earth is an elastic body it is first compressed by the shock 
waves and subsequently it expands after the sho,-k wave is dissipated . 
Where an aquifer is included in the segment of the earth affected by 
the shock waves of an earthquake there will first be an abrupt increase 
in waterpressure as the water assumes part of the imposed compressive 
stress, followed by an abrupt decrease in water pressure as the im­
posed stress is removed. In attempting to adjust to the pressure 
changes, the water level in an artesian well first rises and then falls. 
The amounts of the rise and fall of the water level, with respect to the 
initial position, are approximately the same. Cases have been re­
corded, however, where the water level did not return to its initial 
position (Brown, 1948, p. 193-195) . This is presumably due to 
permanent rearrangement of the grains of material composing the 
aquifer. Fluctuations of greater magnitude have been observed in 
wells in limestone aquifers than in wells in granular material . 
The following table gives the types of shock waves caused by 

earthquakes, the approximate average velocities at which they travel 
and the path they take . 
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TABLE 1 .-Approximate average velocities and paths taken by different types of shock 
waves caused by earthouakes 

[After Byerly, P.,1933, p.155] 

Approximate average velocity 
Type of shock wave Path(km per (ft per

se )c sec) ( min) r I (hr~er 
Deep-seated--_____---------__----------------------- 5 .5 18, 000+ 2051 112,030+ ChordSurface-----------------_----------__---------------- 3 .2 10, 500+ 120+ 7,200+ Arc 

COEFFICIENT OF STORAGE AND ITS RELATION TO ELASTICITY 
The coefficient of storage is a function of the elasticity of an artesian 

aquifer. Jacob (1950) has expressed the relation as 

S=7o0m(Q+e 

where in this instance yo is the specific weight of the water at a stated 
reference temperature, and 0, m, (3, and a are as defined earlier in 
this report . This formula assumes no leakage from or into contiguous
beds . 

Digressing momentarily, the specific weight, y, of a fluid at a 
stated reference temperature is defined as its density, p, multiplied by
the local acceleration due to gravity, g. Stated another way, it is the 
weight per unit volume that takes into account the magnitude of the 
local gravitational force. The manner in which specific weight is 
related to such more commonly used properties as mass, weight, and 
density can be developed in the following fashion . First it should be 
recognized that in the English engineering system the unit of mass is 
termed a "slug" . It is the mass in which an acceleration of 1 ft per 
sec per sec. is produced by a force of 1 lb . Thus 1 slug of mass is 
approximately equal to 32.2 lb of mass . The mass, M, in slugs, of 
any substance is determined from the relation 

M=W 
9 

where W is the weight of the substance in pounds . Inasmuch as 
weight is dependent on the local gravitational force it obviously varies 
with location . Thus, the fraction W/g takes into account in both 
numerator and denominator the local force of gravity, which shows 
that mass is an absolute property that does not change with location . 
Density is defined as mass per unit volume, V. That is 

DensityV 
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Thus density also is an absolute property that does not change with 
location . (Slight changes occur with change in temperature but 
ordinarily, within the range of ground-water temperatures encountered, 
no adjustment for this factor is necessary.) If the original relation 
given for determining mass, 111, is solved for the weight, W, and if both 
sides of the rewritten equation are divided by the volume, V, there 
follows 

The brackets on the left side of the equation are now seen to include 
the fraction equivalent to specific weight and the brackets on the 
right side include the fraction equivalent to density. That is : 

7=pg 

Returning to the discussion at hand, it is important to point out 
that considerable study remains to be done regarding the elastic 
behavior of artesian reservoirs . It would be worthwhile, for example, 
to compute the values of the bulk modulus of compression («) of the 
solid skeleton of the various artesian reservoirs where coefficients of 
storage have been determined from various types of aquifer tests. 
R. R. Bennet,t (oral communication) has supplied the following data 
for the principal aquifer in the Baltimore, 'Id., area : 

S=0.0002 

9=0.30 

m=100 feet=1200 inches 
Recognizing that for water 

62 .4 
70=62.4 lbs per cu ft=

1728 (or 0.0361 lb per cu in)
62 

and 

33X10'6 (sq in per lb)Q 3001000 

appropriate substitution of all known quantities is made in Jacob's 
equation for the storage coefficient and the value of a is computed. 
Thus 

0.0002=(0 .0361)(0.30)(1200)
L
0.0000033+ 0 

30] 
or 

a=0.00000363 sq in per lb or 3 .63 X 10-6 sq in per lb 

Conversely, it is possible to determine the coefficient of storage if a is 
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known. Jacob (1941) determined from pumping tests that the modu-
lus of compression («) of the Lloyd sand member of the Raritan for 
mation on Long Island, N.Y., was 2 .1 X 10--8 in per lb . In a location 
where this sand has a porosity (0) of 0.30 and is confined to form an 
aquifer having a thickness (m) of 50 feet the coefficient of storage 
may be computed as 

2.1X10-1
S= (0.0361) (0.30) (50X 12)[](3.3X10-8)+

0.30 

S=6.7X10-5 

The coefficient of storage is related to barometric and tidal efficiency . 
As stated previously, Jacob (1940) showed mathematically that the 
sum of the barometric efficiency and tidal efficiency must equal unity 
(BE+TE=1) . He showed further than when b=1 the storage co­
efficient is related to the barometric efficiency as follows, 

S=('Yoem#) [BE]1

using the same terminology as before and assuming no leakage from or 
into contiguous beds . By observing tidal fluctuations in a well, 
screened in the Lloyd sand member of the Raritan formation on Long 
Island, Jacob (1940) could then determine tidal efficiency and compute 
the coefficient of storage. His computations for well Q-288, near 
Rockaway Park, where the tidal efficiency was determined as 42 
percent, are as follows : 

_1 _ 1 _ 1 -1.72.
BE 1- (TE) 1-0.42 

Ascribing a thickness of 200 feet and a porosity of 0.35 to the Lloyd 
sand member in the vicinity of Rockaway Park, Long Island, and sub­
stituting in the foregoing equation for storage coefficient, there 
results-

S= (0.0361) (0.35) (200 X12)
[3001000] 

(1'72)' 

S=1.7X10-4 . 

This value for the coefficient of storage is comparable to the values 
determined from pumping tests. 
Jacob (1941) observed that the compressibility of the Lloyd sand 

member, as computed from a discharging-well test, was about 2% 
times that computed from tidal fluctuations and reasoned that this 
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disparity might be due, in part, to the range of stress involved . He 
states­

* * * during the pumping test of 1940 the head in the Lloyd sand declined to 
a new low over a considerable area in the vicinity of the pumped wells, and con­
sequently the stress in the skeleton of the aquifer reached a new high . It is to be 
expected that the modulus of elasticity would be smaller for the new, higher 
range of stress than for the old range over which the stress had fluctuated many 
times . 

AQUIFER TESTS-BASIC THEORY 

WELL METHODS-POINT SINK OR POINT SOURCE 
CONSTANT DISCHARGE OR RECHARGE WITHOUT VERTICAL LEAKAGE 

EQUILIBRIUM FORMULA 

Wenzel (1942, p . 79-82) showed that the equilibrium formulas 
used by Slichter (1899), Turneaure and Russell (1901), Israelson 
(1950), and Wyckoff, Botset, and Muskat (1932) are essentially 
modified forms of a method developed by Thiem (1906), as are the 
formulas developed by Dupuit (1848) and Forchheimer (1901) . 
Thiem apparently was the first to use the equilibrium formula for 
determining permeability and it is frequently associated with his 
name . The formula was developed by Thiem from Darcy's law and 
provides a means for determining aquifer transmissibility if the rate 
of discharge of a pumped well and the drawdown in each of two 
observation wells at different known distances from the pumped 
well are known . The Thiem formula, in nondimensional form, can be 
written as 

T= Q
log, (r2/rl) 

27r(sl - s2) 

where the subscript e in the log term indicates the natural logarithm. 
In the usual Geological Survey units (see p. 73), and using common 
logarithms, equation 1 becomes 

T_527 .7Q logo (r2lrl) ~ 
(2)

81 -82 
where 

T=coefficient of transmissibility, in gallons per day per foot, 
Q=rate of discharge of the pumped well, in gallons per minute, 

rl and r2 =distances from the pumped well to the first and second 
observation wells, in feet, and 

sl and s2 =drawdowns in the first and second observation wells, in feet . 
The derivation of the formula is based on the following assumptions : 

(a) the aquifer is homogeneous, isotropic, and of infinite areal extent ; 
(b) the discharging well penetrates and receives water from the entire 
thickness of the aquifer ; (c) the coefficient of transmissibility is con­
stant at all times and at all places ; (d) pumping has continued at a 
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uniform rate for sufficient time for the hydraulic system to reach a 
steady-state (i .e ., no change in rate of drawdown as afunction of time) 
condition ; and (e) the flow is laminar. The formula has wide appli­
cation to ground-water problems despite the restrictive assumptions 
on which it is based . 
The procedure for application of equation 2 is to select some con­

venient elapsed pumping time, t, after reaching the steady-state con­
dition, and on semilog coordinate paper plot for each observation 
well the drawdowns, s, versus the distances, r. By plotting the values 
of s on the arithmetic scale and the values of r on the logarithmic scale, 
the observed data should . lie on a straight line for the equilibrium 
formula to apply. From this straight line an arbitrary choice of 
s1 and 82 should be madeand the corresponding values ofrl and r2recorded . 
Equation 2 can then be solved for T. 
Jacob (1950, p . 368) recognized that the coefficient of storage 

could also be determined if the hydraulic system had reached a steady­
state condition (see assumption d, above), for thereafter the drawdown 
is expressed very closely by the nondimensional formula 

2.25Tt s_ Q 
-4rT loge r2S (3) 

or, in the usual Survey units and using common logarithms, 

264Q, 0.3Tt 
8=-T 0910 r2S, (4) 

Thus after the coefficient of transmissibility has been determined, the 
coordinates of any point on the semilogarithmic graph previously 
described can be used to solve equation 4 for the coefficient of storage. 

NONEQIIILIBRIIIM FORMULA 

Theis (1935) derived the nonequilibrium formula from the analogy 
between the hydrologic conditions in an aquifer and the thermal 
conditions in an equivalent thermal system . The analogy between 
the flow of ground water and heat conduction for the steady-state 
condition has been recognized at least since the work of Slichter (1899), 
but Theis was the first to introduce the concept of time to the mathe­
matics of ground-water hydraulics . Jacob (1940) verified the deri­
vation of the nonequilibrium formula directly from hydraulic concepts . 
The nonequilibrium formula in nondimensional form is 

ue. du,frs-4Q 23/4Tj u 

where u=r2Sl4Tt, and where the integral expression is known as 
an exponential integral . 
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Using the ordinary Survey units equation 5 may be written as 
e_U114.6Q 

T f.870S/Tt u , 

where 
u=1.87r2S/Tt, 
s=drawdown, in feet, at any point of observation in the vicinity 

of a well discharging at a constant rate, 
Q=discharge of a well, in gallons per minute, 
T=transmissibility, in gallons per day per foot, 
r=distance, in feet, from the discharging well to the point of 

observation, 
S=coefficient of storage, expressed as a decimal fraction, 
t=time in days since pumping started . 

The nonequilibrium formula is based on the following assumptions : 
(a) the aquifer is homogeneous and isotropic; (b) the aquifer has 
infinite areal extent ; (c) the discharge or recharge well penetrates 
and receives water from the entire thickness of the aquifer; (d) the 
coefficient of transmissibility is constant at all times and at all places ; 
(e) the well has an infinitesimal (reasonably small) diameter ; and 
(f) water removed from storage is discharged instantaneously with 
decline in head. Despite the restrictive assumptions on which it is 
based, the nonequilibrium formula has been applied successfully 
to many problems of ground-water flow . 
The integral expression in equation 6 cannot be integrated directly, 

but its value is given by the series 

eu" du=W(u)=-0.577216-log, u+u.,J 1'7rIS/Ti 
2 3 4-22! -+- .3!-44! . . . . . (7) 

where, as already indicated, 

__1 87r2S u Tt 

The exponential integral is written symbolically as W(u) which 
is read "well function of u." Values of W(u) for values of u from 
10-1 b to 9.9, as tabulated in Wenzel (1942), are given in table 2 . In 
order to determine the value of W(u) for a given value of u, using 
table 2, it is necessary to express u as some number (N) between 1 .0 
and 9 .9, multiplied by 10 with the appropriate exponent . For ex-
ample, when u has a value of 0.0005 (that is, 5 .O X10-4 ), W(u) is 
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determined from the line N=5.0 and the column NX 10-4 to be 
7.0242 . 

Referring to equations 6 and 8, if s can be measured for one value 
of r and several values of t, or for one value of t and several values of r, 
and if the discharge Q is known, then S and T can be determined . 
Once these aquifer constants have been determined, it is possible, 
theoretically, to compute the drawdown for any time at any point on 
the cone of depression for any given rate and distribution of pumping 
from wells. It is not possible, however, to determine T and Sdirectly 
from equation 6, because T occurs in the argument of the function and 
again as a divisor of the exponential integral . Theis devised a con­
venient graphical method of superpoFition that makes it possible to 
obtain a simple solution of the equation . 
The first step in this method is the plotting of a type curve on 

logarithmic coordinate paper. From table 2 values of W(u) have 
been plotted against the argument u to form the type curve shown in 
figure 23 . It is shown in two segments, A-A and B-B, in order that 
the portion of the type curve necessary in the analysis of pumping 
test data could be plotted on a sheet of convenient size . Curve B-B 
is an extension of curve A-A and overlaps curve A-A for values of 
W(u) from about 0.22 to 1 .0 . 
Rearranging equations 6 and 8 there follows 

S-[114.6Q] 
T W(u) (9) 

or 
log s=Clog 11TQ]-{-log W(u) (9a) 

and 
z 
t-[1 .87S]u (10) 

or 
(l0a)log t=[log 1 .g7S]--log u 

If the discharge, Q, is held constant, the bracketed parts of equations 
9a and 10a are constant for a given pumping test, and W(u) is related to 



23 of the well functiongraph W(u)-constant discharge 
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u in the manner that s is related to r1lt . This is shown graphically
in figure 24 . Therefore, if values of the drawdown s are plotted against 
r2/t, or 1/t if only one observation well is used, on logarithmic tracing 
paper to the same scale as the type curve, the curve of observed data 
will be similar to the type curve. The data curve may then be super­
posed on the type curve, the coordinate axes of the two curves being 
held parallel, and translated to a position which represents the best 
fit of the field data to the type curve. An arbitrary point is selected 
anywhere on the overlapping portion of the sheets and the coordinates 
of this commwu poizit. on . both sheets are rewrdecl. It is often cocuagni­
ent to select a point whose coordinates are both 1 . These data are 
then used with equations 9 and 10 to solve for T and S. 

FIGURE 24 .-Relation of W(u) and u to a and r2/t . 

A type curve on logarithmic coordinate paper of W(u) versus 1/u, 
the reciprocal of the argument, could have been plotted . Values of 
the drawdown (or recovery), s, would then have been plotted versus 
t, or tlr2 and superposed on the type curve in the manner outlined 
above. This method eliminates the necessity for computing 1/t values 
for the values of s. 

MODIFIED AONEQUILIBRIUM FORMULA 

It was recognized by Jacob (1950) that in the series of equation 7 
the sum of the terms beyond logeu is not significant when u becomes 
small. The value of u decreases as the time, t, increases and as r 
decreases. Therefore, for large values of t and reasonably small 
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values of r, the terms beyond logeu in equation 7 may be neglected . 
When r is large, t must be very large before the terms beyond log,u in 
equation 7 can be neglected . Thus the Theis equation in its abbrevi­
ated or modified nondimensional form is written as 

__ Q 
loge

4Tt_0.5772)s 41rT rYS 

=4Q loge 2.25Tt 

which is obviously identical with equation 3. In the usual Survey 
units, then, this equation will be identical with equation 4, all terms 
being as previously defined. 

In applying equation 4 to measurements of the drawdown or 
recovery of water level in a particular observation well, the distance 
r will be constant, and it follows that 

at time tl, s1= 2TQ (loglo0.3Tt1)~ 

at time t2, s2=2TQ (log r2S2)~ 

and the change in drawdown or recovery from time tl to t2 is 

.s2-s1=2TQ(loglo tl) 

Rewriting this equation in form suitable for direct solution of T, 
there follows 

Z,-264Q(loglo t21t1) ~ (11) 
s2-81 

where Q and T are as previously defined, tl and t2 are two selected 
times, in any convenient units, since pumping started or stopped, and 
s l and 82 are the respective drawdowns or recoveries at the noted 
times, in feet . 
The most convenient procedure for application of equation 11 is 

to plot the observed data for each well on the semilogarithmic coor­
dinate paper, plotting values of t on the logarithmic scale and values 
of s on the arithmetic scale . After the value of u becomes small 
(generally less than 0.01) and the value of time, t, becomes great, 
the observed data should fall on a straight line . From this straight 
line make an arbitrary choice of tl and t2 and record the corresponding 
values of sl and 82 . Equation 11 can then be solved for T. For 
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convenience, t l and t2 are usually chosen one log cycle apart, because 
then 

logio t2 t=1 

and equation 11 reduces to 

T=2s4Q (12)As 

where As is the change, in feet, in the drawdown or recovery over one 
log cycle of time . 
The coefficient of storage also can be determined from the same 

semilog plot of the observed data . When s=0, equation 3 becomes 

s=0=4Q loge 2.25Tt r2s 
Solving for the coefficient of storage, S, the equation in its final form 
becomes 

S,-2.25Tt (13)2r

or, in the usual Survey units, 

S-0.3Tto 
r2 (14) 

where S, T, and r are as pre,,iously defined and to is the time intercept, 
in days, where the plotted straight line intersects the zero-drawdown 
axis . If any other units were used for the time, t, on the semilog plot, 
then obviously tO must be converted to days before using equation 14 . 
Lohman (1957) has described a simple method for determining S 
using the data region of the straight-line plot without extrapolating 
to the zero-drawdown axis . 

THEIS RECOVERY FORMULA 

A useful corollary to the nonequilibrium formula was devised by
Theis (1935) for the analysis of the recovery of a pumped well . If 
a well is pumped, or allowed to flow, for a known period of time and 
then shut down and allowed to recover, the residual drawdown at 
any instant will be the same as if the discharge of the well had been 
continued but a recharge well with the same flow had been introduced 
at the same point at the instant the discharge stopped . The residual 
drawdown at any time during the recovery period is the difference 
between the observed water level and the nonpumping water level 
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extrapolated from the observed trend prior to the pumping period,
The residual drawdown, s', at any instant will then be 

s1= 114T.6Q[f' - (15)e-u du-f' , ez 2.s7r SITI u 1.s7r s/TC 'uu duJ 
where Q, T, S, and r are as previously defined, t is the time since 
pumping started, and t' is the time since pumping stopped. The 
quantity 1 .87r2S/Tt' will be small when t' ceases to be small because 
r is very small and therefore the value of the integral will be given
closely by the first two terms of the infinite series of equation 7, 
Equation 15 can therefore be written, in modified form, in the usual 
Survey units, as 

264Q
T= s710910 F

t 
(16) 

The above formula is similar in form to, and is based on the same 
assumptions as, the modified nonequilibrium formula developed by
Jacob, and it permits the computation of the coefficient of trans­
missibility of an aquifer from the observation of the rate of recovery 
of water level in a pumped well, or in a nearby observation well 
where r is sufficiently small to meet the above assumptions. 
The Theis recovery formula is applied in much the same manner as 

the modified nonequilibrium formula. The most convenient pro­
cedure is to plot the residual drawdown, s', against tlt' on semilogarith-
mic coordinate paper, s' being plotted on the arithmetic scale and 
tlt' on the logarithmic scale. After the value oft' becomes sufficiently
large, the observed data should fall on a straight line . The slope of 
this line gives the value of the quantity log, 0 (tlt') Is' in equation 16 . 
For convenience, the value of tlt' is usually chosen over one log cycle 
because its logarithm is then unity and equation 16 then reduces to 

T-264 Q 
As' (17) 

where Os' is the change in residual drawdown, in feet, per log cycle of 
time. It is not possible to determine the coefficient of storage from 
the observation of the rate of recovery of a pumped well unless the 
effective radius, r, which is usually difficult to determine, is known. 
The Theis recovery formula should be used with caution in areas 
where it is suspected that boundary conditions exist. If a geologic
boundary has been intercepted by the cone of depression during pump­
ing, it maybe reflected in the rate of recovery of the pumped well, and 
the value of T determined by using the Theis recovery formula could 
be in error. With reasonable'care the recovery in an observation well 



������

102 GROUND-WATER HYDRAULICS 

can be used, of course, to determine both transmissibility and storage, 
whether or not boundaries are present. 

APPLICABMTY OF METHODS TO ARTESIAN AND WATER-TABLE AQUIFERS 

The methods previously discussed have been used successfully for 
many years in determining aquifer constants and in predicting the 
performance of both water-table and artesian aquifers . The deriva­
tions of the equations are based, in part, on the assumptions that the 
coefficient of transmissibility is constant at all times and places and 
that water is released from storage instantaneously with decline in 
head . It should be recognized, however, that these and many other 
idealizations are necessary before mathematical models can be used 
to analyze the physical phenomena associated with ground-water 
movement . Thus the hydrologist cannot blindly select a model, turn 
a crank, and accept the answers. He must devote considerable time 
and thought to judging howclosely his real aquifer resembles the ideal . 
If enough data are available he will always find that no ideal aquifer, 
of the type postulated in the theory, could reproduce the data obtained 
in an actual pumping test . He should understand that the dispersion 
of the data is a measure of how far his aquifer departs from the ideal. 
Therefore, he must plan his test procedures so that they will conform 
as closely as possible to the theory and thus give results that can 
safely be applied to his aquifer. He must be prepared to find out, 
however, that his aquifer is too complex to permit a clear evaluation of 
its coefficients of transmissibility and storage. He must not tell 
himself or the reader that "the coefficient of storage changed" during
the test but must realize that he got different values when he tried to 
apply his data, inconsistently, to an ideal theoretical aquifer. 
Thus there is little justification for the premise that the storage

coefficient of a water-table aquifer varies with the time of pumping,
inasmuch as such anomalous data are merely the results of trying to 
apply a two-dimensional flow formula to a three-dimensional problem. 
The nonequilibrium formula was derived on the basis of strictly radial 
flow in an infinite aquifer and its application to situations where 
vertical-flow components occur is not justified except under certain 
limiting conditions . As the time of pumpingbecomes large, however, 
the rate of water-level decline decreases rapidly so that eventually the 
effect of vertical-flow components in water-table aquifers are mini­
mized. 

If the drawdowns are large compared to the initial depth of flow, 
it is necessary to adjust the observed drawdown in a pumping test of a 
water-table aquifer before the nonequilibrium formula is applied. 
According to Jacob (1944, p. 4) if the observed drawdowns are 
adjusted (reduced) by the factor s2/2m, where 8 is the observed draw­
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down and m is the initial depth of flow, the value of Twill correspond 
to equivalent confined flow of uniform depth, and the value of S will 
more closely approximate the true value. He adds that when the 
drawdowns are adjusted the nonequilibrium formula can be used with 
fair assurance even when the dewatering is as much as- 25 percent of 
the initial depth of flow. 
Where the discharging well only partially penetrates the aquifer it 

mayalso be necessary to adjust the observed drawdowns. Procedures 
for accomplishing this have been described by Jacob (1945) . 

INSTANTANEOUS DISCHARGE OR RECHARGE 

"BAMEB" METHOD 

Skibitzke (1958) has developed a method for determining the 
coefficient of transmissibility from the recovery of the water level in a 
well that has been bailed . At any given point on the recovery curve 
the following equation applies : 

,_= V (18) 
s 47rTt ler,,ZS/4TtI 

where 
s'=residual drawdown, 
V=volume of water removed in one bailer cycle, 
T=coefficient of transmissibility, 
S=coefficient of storage, 
t=length of time since the bailer was removed, 

r,,, =effective radius of the well . 

The effective radius, r� , of the well is very small in comparison to 
the extent of the aquifer. As r,o is small, the term in brackets in 
equation 18 approaches unity as t increases . Therefore for large 
values of t, equation 18 may be modified and rewritten, in consistent 
units, as 

V V s 19)
47rTt=-12.57Tt' 

where s', T, and t have units and significance as previously defined, 
and where V represents the volume of water, in gallons, removed 
during one bailer cycle. If the residual drawdown is observed at 
some time after completion of n bailer cycles then the following 
expression applies 

s,_ 1 (20)
12.57T 

where the subscripts merely identify each cycle of events in sequence . 
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Thus V3 represents the volume of water removed during the third 
bailer cycle and to is the elapsed time from the instant that water 
was removed from storage to the instant at which the observation 
of residual drawdown was made. 

If approximately the same volume of water is removed by the 
bailer during each cycle, then equation 20 becomes 

1s,_ V 1 11 . (21)
312.57T ltt2+t+ 

. . 
t� 

The "bailer" method is thus applied to a single observation of the 
residual drawdown after the time since bailing stopped becomes large. 
The transmissibility is computed by substituting in equation 21 the 
observed residual drawdown, the volume of water V considered to be 
the average amount removed by the bailer in each cycle, and the 
summation of the reciprocal of the elapsed time, in days, between 
the time each bailer of water was removed from the well and the time 
of observation of residual drawdown . 

"SLUG" METHOD 

Ferris and Knowles (1954) discuss a convenient method for esti­
mating the coefficient of transmissibility, under certain conditions . 
This is done by injecting a given quantity or "slug" of water into a 
well . Their equation for determining the coefficient of transmissi­
bility is the same as the equation derived by Skibitzke for the bailer 
method, inasmuch as the effects of injecting a slug of water into a 
well are identical, except for sign, with the effects of bailing out 
a slug of water. Thus equation 19 has direct application, only s' 
now represents residual head, in feet, at the time t, in days, following 
injection of V gallons of water. 
As used in the field, this method requires the sudden injection of a 

known volume of water into a well and the collection thereafter of 
a rapid series of water-level observations to define the decay of the 
head that was built up in the well . An arithmetic plot of residual 
head values versus the reciprocals of the times of observation should 
produce a straight line whose slope, appropriately substituted in 
equation 19, permits computation of the transmissibility . 

Suggested equipment for use in injecting a slug of water into a 
well, and for making the rapid series of water-level observations 
required immediately thereafter, is shown schematically in figure 25 . 
The duration of a "slug" test is very short, hence the estimated 

transmissibility determined from the test will be representative only 
of the water-bearing material close to the well . Serious errors will 
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Rope or wire 

Cover plate with fixed "eye" 

Gasket secured to cover plate 

-Flange and nipple making 
watertight connection 
with bottom of drum 

Surface 

A . APPARATUS FOR MAKING "SLUG"TEST 

Pipe 

Lead filler 

B . PLAN FOR PERCUSSION INSTRUMENT FOR RAPID 
MEASUREMENT OF WATER LEVELS 

FIGU$B 28.-Suggested equipment for a "slug" test . 

be introduced unless the observation well is fully developed and 
completely penetrates the aquifer. Use of the "slug" test should 
probably be restricted to artesian aquifers of small to moderate 
transmissibility (less than 50,000 gallons per day per foot) . 
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CONSTANT HEAD WrMOIIT VERTICAL SAGE 

Controlled pumping tests have proved to be an effective tool in 
,determining the coefficients of storage and transmissibility . In the 
usual test the discharge rate of the pumped well is held constant, 
whereas the drawdown varies with time . The resulting data are 
analyzed graphically as previously described. Jacob and Lohman 
(1952) derived a formula for determining the coefficients of storage 
and transmissibility from a test in which the discharge varies with 
time and the drawdown is held constant . The formula, based on 
the assumptions that the aquifer is of infinite areal extent, and that 
the coefficients of transmissibility and storage are constant at all 
times and all places, is developed from the analogy between the hydro­
logic conditions in an aquifer and the thermal conditions in an 
equivalent thermal system . The formula is written as 

Q=2rTs.G(a), (22) 
where 

m 

G(a)=4 xe- z [2+tan-1
Yo(x)] dx 

(23)
Jo 

and 
a_- Tt (24)r-2S 

Using the customary Survey units, equations 22 and 24 are rewritten 
in the form 

Q=
Ts.G(a) (25)229 

and 
0.134 Tt (26)a= r,~2 S 

where Q, T, and t have the units and meaning previously defined and 
where 

s.=constant drawdown, in feet, in the discharging well, 
r.=effective radius, in feet, of the discharging well . 

The terms Jo(x) and Yo(x) are Bessel functions of zero order of the 
first and second kinds respectively. 
The integration required in equation 23 cannot be accomplished 

directly so it is necessary to replace the integral with a summation and 
solve it by numerical methods. In this fashion values of G(a) for 
values of a from 10-4 to 10'2, have been tabulated by Jacob and Loh­
man, (1952), and are given herewith in table 3. The term G(a) is 
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here designated as the "well function of a, constant-head situation ." 
This table is used in the same manner as table 2, which gives values 
of W(u) versus u. 

It is seen from equations 25 and 26 that if Q can be measured for 
several values of t and if the constant drawdown, s, and the effective 
radius, r., are known, S and T can be determined . It is not possible 
to determine S and T directly, however, since T occurs both in the 
argument of the function and as a multiplier of G(a) . A convenient 
graphical method, similar to that used in solving the nonequilibrium
formula, makes it possible to obtain a simple solution . 
The first step in this method is the plotting of a type curve on loga­

rithmic coordinate paper. From table 3, values of G(a) were plotted
against the argument a to form the type curve shown in figure 26 . 
It is shown in several segments in order that the entire type curve 
may be plotted on a sheet of convenient size . 
Rearranging equations 25 and 26 there follows : 

Q 229 G(a) 

or 

log Q= log-'29]-}-log G(a), (27)1
and 

t= rWS 
0.13T-

or 

log t=Clog 0r.1̀°33SST]-{-log a . (28) 

If the drawdown, sm, is held constant, the bracketed parts of equations
27 and 28 are constant for any given test and log G(a) is related to 
log a in the same manner that log Q is related to log t. (Note the 
similarity in form between equations 27 and 28 and equations 9a and 
10a.) Therefore if values of the discharge, Q, are plotted against cor­
responding values of time, t, on logarithmic tracing paper to the same 
scale as the type curve, the curve of observed data will be similar to 
the type curve. The data curve may then be superposed on the type 
curve, the coordinated axes of the two curves being held parallel, and 
translated to a position that represents the best fit of the data to the 
type curve. An arbitrary point is selected on the overlapping portion
of the sheets and the coordinates of this common point on both sheets 
are used with equations 25 and 26 to solve for Tand S. This graphical
solution is similar to that used with the Theis nonequilibrium formula . 



FIGURE 26.--Logarithmic graph of well ftInctlon G(a)-coustan$ 4rawdown . 
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TABLE 3.-Values of G(a) for values of a between 10-! and 10 12 

[From Jacob and Lohman, 1952, p. 561] 

10-+ 10-S 10-2 10-1 1 10 l0= 101 

1-------------------- 56.9 18.34 6.13 2.249 0.985 0.534 0.346 0.251
2____________________ 40.4 13.11 4.47 1.716 .803 .461 .311 .232
3____________________ 33.1 10.79 3.74 1.477 .719 .427 .294 .222
4____________________ 28.7 9.41 3.30 1.333 .667 .405 .283 .215

25.7 8.47 3.00 1.234 .830 .389 .274 .210
8____________________5-------------------- 23.5 7.77 2.78 1.160 .602 .377 .268 .206

21 .8 7.23 2.60 1.103 .580 .367 .263 .203
7-------------------- 20.4 8.79 2.48 1.0.57 .562 .359 .258 .200
8-------------------- 19.3 6.43 2.35 1.018 .547 .352 .254 .198
9--------------------10------------------- 18.3 8.13 2.25 .985 .534 .346 .251 .196 

104 100 100 107 100 100 1010 1011 

1____________________ 0.1984 0.1608 0.1360 0.1177 0.1037 0.0927 0.0838 0.07642-------------------- .1841 .1524 .1299 .1131 .1002 .0899 .0814 .0744 
a-------------------- .1777 .1479 .1288 .1106 .0962 .0883 .0801 .0733
4-------------------- .1733 .1449 .1244 .1089 .0968 .0872 .0792 .0726
5.A __________________ .1701 .1426 .1227 .1076 .0958 .0884 .0785 .0720
8-------------------- .1675 .1408 .1213 .1088 .0950 .0857 .0779 .0716
7____________________ .1654 .1393 .1202 .1057 .0943 .0851 .0774 .0712
8-------------------- .1636 .1380 .1192 .1049 .0937 .0846 .0770 .0709
9-------------------- .1621 .1369 .1184 .1043 .0932 .0842 .0767 .0706
10 ------------------- .1608 .1360 .1177 .1037 .0927 .0838 .0784 .0704 

Jacob and Lohman (1952) showed that for large values of t, the 
function G(a) can be replaced by 2/W(u), and it has already been 
shown (see discussion, p. 99) that the approximate form of W(u) is 
given by 2.30 log,, (2 .25Tt/Sr.2) . Making this substitution for G(a)
in equation 22, there follows 

Q__ 47rTs,o/2.30 
logo (2.25Tt/r.2S) 

or, rearranging terms, 

2.30 t 2.30 2.25T (29)Q-47rT 1°gr�2+ 47rT log S 

It should be evident from the form of equation 29, that if arithmetic 
values of the variable s./Q are plotted against logarithmic values of 
the variable tlr"2 the points will define a straight line . The slope of 

2 .this line, in equation 29, is the prefix of the variable term log (tlr. )
In other words, 

Slope of straight-line plot=A log 
2.302 =4T 

Once the slope of the graph is determined, therefore, the coefficient of 
transmissibility may be computed from the relation 

T_2.30A(log tlr,o2). (30)
4,rA(s�/Q) 
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If the slope is measured over one log cycle then the term 0 log (t/r.2)
equals unity and equation 30 is further simplified to the form 

_ 2.30 
T-47r0 (s~,/Q) 

(31) 

The coefficient of storage could then be found by substituting in 
equation 29 the computed value of T and the coordinates of any con­
venient point on the straight-line plot . However, the computation is 
greatly simplified by noting that for the point where the straight-line 
plot intersects the logarithmic time axis (that is, where s�/Q=0),
equation 29 becomes 

S= 2.25T(t/r,,2)o . (32) 

In the usual Survey units, equations 31 and 32 are written 

6T o(s/Q) (33) 

and 
S=0.3T(t/r�2 )o . (34) 

Thus equations 33 and 34 are applied through the simple device of 
a semilogarithmic plot where values of ,,,IQ are plotted on the arith­
metic scale against corresponding values of t/r.2 on the logarithmic
scale. 
The methods that have been outlined in this section are useful in 

determining the coefficient of transmissibility but should be used with 
caution in determining the coefficient of storage because it is often 
difficult to determine the effective radius of the pumped well . 

CONSTANT DISCHARGE WITH VERTICAL LEASAGE 
"L$AHY AQIIIFRR" FORMULA 

A problem of practical interest is that of an elastic artesian aquifer
that is replenished by vertical leakage through overlying or underly­
ing semipermeable confining beds . In most places the confining beds 
only impede or retard the movement of ground water rather than 
prevent it . It is often true that this retardation of ground-water 
movement is sufficient so that the Theis equation (which assumes 
impermeable confining beds) can be applied. Nevertheless there will 
be occasions when departure of the test data from the predictions of 
the Theis equation will require investigation of the ability of the 
confining beds to transmit water. 
As an example of the magnitude of flow through material of low 

permeability, consider a semipermeable confining bed, 50 feet thick, 
consisting of silty clay that has a permeability of 0.2 gallon per day 
per square foot . Such a material is listed by Wenzel (1942, p . 13, 
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lab. no . 2,278) as including about 49 percent (by weight) clay and 
about 45 percent silt. Assume that the confining bed is saturated 
and that in some manner there is established and maintained a head 
differential of 25 feet between the .top and bottom surfaces of the bed. 
The rate of percolation, related to this head differential, through the 
confining bed is computed from the previously given (see p. 73) variant 
of Darcy's law, 

Qd=P'IA, 
where, in this example, 
Qd=discharge in gallons per day through specified area of confining

bed, 
P'=vertical permeability of confining bed=0.2 gallon per day per 

square foot, 
I=hydraulic gradient imposed on confining bed=25/50=0.5 foot 

per foot . 
A=specified area of confining, bed through which percolation occurs . 
Thus, through a confining-bed area of one square foot, 

Qd=0.2 X0.5 X 1=0.1 gallon per day, 
or, through a confining-bed area of one square mile, 

Qd=0.2 X0.5 X5,280X5,280=2,800,000 gallons per day. 
It is known that the cone of depression created by pumping a well 

in an artesian aquifer grows rapidly and thus in a relatively short 
time encompasses a large area . As shown by the above computations, 
the total amount of vertical seepage through confining beds may be 
quite large, even though the permeability of these formations is 
relatively small. If the confining bed in turn is overlain by an aqui­
fer of appreciable storage and transmitting capacity, the radius of the 
cone of influence developed by a well pumpingfrom the artesian aqui­
fer will be determined by the hydrologic regimen of the artesian 
aquifer, the confining bed, and the leakage-source aquifer. 
The first detailed analysis and solution of the leaky-aquifer problem 

was developed by DeGlee l (1930) and later supplemented- by Stegge­
wentz and Van Nes (1939) . 

In these analyses, assumptions related to the physical flow system 
are : (a) the artesian aquifer is bounded above or below by a semi­
permeable confining bed, (b) the aquifer, when pumped is supplied by 
leakage through the confining bed, the leakage being proportional to 
the drawdown, and (c) the aquifer and confining bed are independently
homogeneous and isotropic . It is also assumed that the water level 
in the aquifer supplying water to the semipermeable bed is maintained 

(}lee, (3. J. de, 1930, over grondwaterstroomingen bei wateronttrekking door mittel van putten (On 
ground-water currents through draining by means of wells] : Delft [Netherlands] Tech . Hogeschool thesis. 

I 
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at or very near static level through the interval of pumping. The 
solution developed is for the steady-state condition, wherein it is 
assumed that the drawdown is zero at r= co . 

Jacob (1946) also analyzed this problem, verifying the solution 
for steady flow and also developing a solution for the transient state. 
His final steady-state equation, in nondimensional form, for the draw­
down in an infinite artesian aquifer has the form 

Ko (x) (35) 

or, in the usual Survey units, 

229QKo(x) (36)s- T 

where 

brx=- (37)a 

and 

a=~T/S 
b= P /m'S 
T=coefficient of transmissibility of the artesian aquifer in gallons 

per day per foot, 
P'=coefficient of vertical permeability of the semipermeable con­

fining bed, in gallons per day per square foot, 
S=coefficient of storage of the artesian aquifer, 
Q=rate of withdrawal by the pumped well, in gallons per minute, 
m'=thickness of the semipermeable confining bed, in feet, 
r=distance from the pumped well to the observation well, in feet, 
s=drawdown in the observation well, in feet . 

The symbol Ko(x) is a notation widely but not universally used to 
identify the modified Bessel function of the second kind of the zero 
order. In order to avoid any misunderstanding of its present usage 
it is identified as follows : 

Ko(x)=-[0.5772+logs (xl2)]Io(x) 
+(1/11)2 (x/2) 2+ (1/21) 2(x/2) 4 (1 +1/2) 

+(1/31)2(x/2)1(1+1/2+1/3+ . . ., (38) 
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where 

Io(x)=1+(x/2)2/(1!)2+(X/2)4/(202+(x/2)6/(3!)2+ . . . . (39) 

The notation Io (x) is used to represent the modified Bessel function 
of the first kind of zero order. Values of the function Ka (x) over 
the range of interest for most ground-water problems are given in 
table 4. 
Equations 36 and 37 may be rewritten in the following form 

log s=log C
ZZ
T Q~-}-logKo(x) (40) 

log r=log Cb]~--log x (41) 

The bracketed portions of equations 40 and 41 Ynclude all the terms 
that have been assumed constant in the derivation . It follows then 
that the variable s is related to r in the same manner that Ko(x) is 
related to x. Thus the form of equations 40 and 41 once again sug­
gests the same convenient method of graphical solution that has 
already been described for resolving the Thess formula. A type curve 
for use in solving equations 36 and 37 is prepared by plotting on 
logarithmic graph paper the values given in table 4 . In figure 27 
curve AA is in part a duplication of the lower part of curve BB and 
in part an extension of that curve into the next lower log cycle. 
The solution of equations 36 and 37 thus requires plotting the field 

observations of s and r, at some particular time t, on Logarithmic
graph paper, using the same size of logarithmic scale adopted for the 
type curve. The data curve is superposed on the type curve, the 
coordinate axes of the two curves being held parallel, and translated 
to the position that represents the best fit of the field data to the type 
curve. When the match position is found, the amount of shift or 
translation from the s scale to the Ka(x) scale is measured by the 
bracketed term of equation 40, and the translation between the r 
scale and the x scale is represented by the bracketed member of 
equation 41 . An arbitrary point is selected on the data curve and the 
coordinates of this common point on both the data curve and the 
type curve are recorded . These coordinates, when substituted in 
equations 36 and 37, permit computation of the coefficient of trans­
missibility, T, of the artesian bed, and the value of x, which has 
inherent in it the coefficient of vertical permeability of the leaky con­
fining bed. 
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TABLE 4.-Values of Ko(x), the modified Bessel function of the second kind of zero 
order, for values of x between 10-1 and 9 .9 

[Data for plotting type curve (fig . 27) used in solving equations 36 and 37. Values of Ko(z) in the interval

0 .015zS1 .00 taken from tables in Commerce Dept . (1952, p . 36-80) . Values of Ko(z) in the interval

1 .OSz59 .9 taken from Gray, Mathews, and MacRobert (1931, p. 313-315)] 

N z-N(100) z-N(10- 1) z-N(10-2) N z-N(100) z-N(10-1) z-N(10- 9) 

1 .0 0.4210 2.4271 14 .7212 5.5 0 .002139 .8466

1. 1 .3656 5.6 .001918 
1.2 .3185 5.7 .001721

1 .3 .2782 6.8 .001544

1 .4 .2437 5.9 .001386

1 .5 .2138 2.0300 6.0 .001244 .7775 2 .9329

1 .6 .1880 6.1 .001117

1 .7 .1655 6.2 .001003

1 .8 .1459 6.3 .0009001

1 .9 .1288 6.4 .0008083

2 .0 .1139' 1 .7527 4.0285 6.5 .0007259 .7159

2 .1 .1008 6 .6 .0006520

2 .2 .08927 6.7 .0005857

2 .3 .07914 6 .8 .0005262

2 .4 .07022 6 .9 .0004728

2 .5 .06235 1 .5415 7 .0 .0004248 .6605 2.7798

2 .6 .05540 7 .1 .0003817

2 .7 .04926 7 .2 .0003431

2 .8 .04382 7 .3 .0003084

2 .9 .03901 7 .4 .0002772

3 .0 .03474 1 .3725 3.6235 7 .5 .0002492 .6106

3 .1 .03095 7 .6 .0002240

3 .2 .02759 7 .7 .0002014

3.3 .02461 7 .8 .0001811

3.4 .02196 7.9 .0001629

3.5 .01960 1.2327 8.0 .0001465 .5653 2 .6475

3.6 .01750 8.1 .0001317

3.7 .01563 8.2 .0001185

3.8 .01397 8.3 .0001066

3.9 .01248 8.4 .00009588

4.0 .01116 1 .1145 3 .3365 8.5 .00008626 .5242

4.1 .009980 8.6 .00007761

4.2 .008927 8.7 .00006983

4.3 .007988 8.8 .00006283

4.4 .007149 8.9 .00005654

4.5 .006400 1 .0129 9.0 .00005088 .4867 2.5310

4.6 .005730 9.1 .00004579

4.7 .005132 9 .2 .00004121

4.8 .004597 9 .3 .00003710

4.9 .004119 9 .4 .00003339

5.0 .003691 .9244 3.1142 9 .5 .00003006 .4524

5.1 .003308 9 .6 .00002706

5 .2 .002966 9 .7 .00002436

5 .3 .002659 9 .8 .00002193

5 .4 .002385 9.9 .00001975


1Whenz-0, go(z)-ae . 

In application it is not possible to determine either a or b from field 
observation of steady flow, but their ratio can be determined from the 
definition of x : 

x=r(b/a)=r~PTS, S=r P'/TM' " (42) 

The vertical permeability of the leaky bed can thus be determined 
from equation 42 if the bed thickness, m', is known. However, S,
the coefficient of storage for the artesian aquifer cannot be determined 
as it is removed from the b/a ratio by cancellation . Hantush (1955)
has designated the ratio P'/m' as the "leakage coefficient," and 
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Hantush and Jacob (1955) have described in considerable detail their 
development of equations for the nonsteady-state solution to the 
foregoing problem . 
The preceding discussion has stipulated that equations 36, 37, 

and 42 are properly applied only to steady-state conditions . This 
means that enough time must have elapsed for the drawdown to have 
stabilized throughout the region for which the plot of s versus r is to 
be made. Themanner in which the drawdown stabilizes at observation 
points at selected distances from the discharging well is shown on a 
semilogarithmic plot by Hantush and Jacob (1955, fig. 1) . In effect 
their plot shows individual time-drawdown curves because values of 
drawdown divided by a constant are plotted against values of the 
logarithm of time multiplied by a constant . Of special interest is 
the fact that for all the curves, regardless of the represented distance 
from the discharging well, the drawdown stabilizes or levels off at 
the same value of time . 
Assuming, therefore, that the requirement of stabilized drawdown 

has been met, an important feature of the logarithmic type curve 
(fig . 27) should be recognized . Note that the curve is drawn only for 
values of x greater than 0.01. Thus the matching of a logarithmic 
plot of s versus r against the leaky-aquifer type curve is appropriate
only if the observed data and computed results can be shown to 
yield values of x (which is directly related to r) that are greater than 
0.01 . Actually the critical value of x is about 0 .03, as can be demon­
strated in the following manner. 

In the tables of the Bessel functions (U.S . Department of Commerce, 
1952) the following relation applies for small values of x: 

.Ko(x)=E'o(x)+F'o(x) logio (x) 

The tables show that for values of x ranging from 0 to about 0.03 
the values of Eo (x) and Fo(x) are 0 .116 and -2 .303 respectively . 
Substituting these equivalents in the above relation yields 

Ko (x)=0.116-2 .3031og1o (x), 

which, by substitution from equation 37 and conversion to the natural 
logarithm, becomes 

KO(x)=0.116-log, (br/ca) . 

If equation 35 is rewritten in terms of the difference in drawdown 
between two points at radii rl and r2 (where r2>r,) on the cone of 
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depression, and the foregoing relation for Ko (x) substituted therein, 
there follows the expression 

s1-s2 
2Q

CC0.116-loge_ 
1r)_(0 .

116-loge br2 

or 

S1-S2=2Q 109, 
1 

which is the familiar Thiem equilibrium formula previously presented 
in the form of equation 1 . The conclusion to be drawn is that in the 
region x<0.03 a logarithmic plot of s versus r exhibits only the effects 
of radial flow through the aquifer toward the discharging well ; the 
leakage effects are not significant enough to influence the shape of the 
curve. Although the leaky-aquifer type curve could be extended 
readily into this region of low x values, its curvature is insensitive to 
leakage and is too slight to permit a matching that would be definitive 
of thex valueneeded for computing the leakage coefficient . 
The nature of the abbreviated relation for Ko(x), presented in the 

preceding discussion, suggests a simple means for analyzingthe steady-
state drawdown data within the region x<0.03 . Rewriting equation 
35 in terms of this special relation for Ko (x) produces 

s=2Q 
[0.116-loge (brla)], 

or, in the usual Survey units and the common logarithm, 

s_ 
T 

229Q 
0.116-2.3031oglo burl . (43) 

Recognizing that s and r are the only variables in equation 43, ob­
viously a semilogarithmic plot of s versus log r produces a straight 
line . If ro is the intercept of this straight line at the zero-drawdown 
axis, appropriate substitution in equation 43 yields 

br°=0.116
log 10g a 2.303 

or 
b 1 .12 

(43a) 
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The analysis of steady-state test data for a leaky aquifer can thus 
be summarized in the following three simple procedures : 
1 . Select for plotting only the drawdown data which are within 
the region where drawdowns have levelled off. 

2 . Use equations 36, 37, and 42 with a logarithmic plot of s versus r, 
matched to the leaky-aquifer type curve (fig . 27), only if the ob­
served data and resulting computations produce values of x greater 
than 0.03. 

3 . Use equations 2, 4, and 43a with a-semilogarithmic plot of s versus 
log r if the data and resulting computations produce values of x 
less than 0.03. 
The earliest observations of drawdown in each observation well, 

when s is small, should conform to the Theis nonequilibrium type 
curve for the infinite (nonleaky) aquifer if the rate of leakage from the 
confining bed is comparatively small. The coefficient of storage for 
the artesian aquifer can be determined under these conditions from 
the earliest observations of drawdown (Jacob, 1946, p . 204) . The 
computed coefficient of transmissibility should be checked by com­
paring the value obtained from matching the earliest data to the 
nonequilibrium type curve with the value obtained by matching the 
later data to the steady-state leaky-aquifer type curve . If consistency 
of the T values is not obtained, then the leakage may be causing too 
much deviation at the smaller values of t to permit application of the 
Theis nonequilibrium formula. 

VARIABLE DISCHARGE WITHOUT VERTICAL LF.ASAGE 
By R . W. STALLMAN 

CONTIRIIOIISLY VARYING DISCHARGE 

The rate at which water is pumped from a well or well field com­
monly varies with time in response to seasonal changes in demand. 
For instance, the pumping rate, as shown by records of daily or 
monthly discharge, is often found to be varying continuously. Where 
this element of variability is recognized in ground-water problems, the 
analytical methods that are described in the preceding sections of this 
report are not applicable without some modification or approximation . 
Exact equations could perhaps be developed for the case of continu­
ously varying discharge, but the cost of analysis, in terms of time and 
effort, would likely be prohibitive considering that a separate and 
specific solution would be required for each problem . It is considered 
more expedient, therefore, to utilize the existing analytical methods, 
rendering them applicable to the field situation by introducing toler­
able approximations of the field conditions. As an example, con­
sider a situation where the pumping rate in a well (which may also 
represent a well field) tapping an artesian aquifer varies continuously 
with time in the manner indicated by the smooth curve shown in 
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figure 28A . This smooth curve may be approximated by the series 
of steps shown, and the analysis of each step may be undertaken 
starting with conventional theory and equations . Thus the Theis 
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nonequilibrium formula (eq. 6) can be used to construct a type curve 
for analyzing the observed drawdowns caused by the stepped pumping 
rates indicated in figure 28A and B. The drawdown, s, at distance r 
from the pumped well, at any time t, is 

S =Si+s2+S3 . . . . . . .+S. (44) 

where the subscripts refer to the OQ values of figure 28B. The zero 
reference time to is chosen arbitrarily so that the effects of the ante­
cedent rate of pumping, Qo, are established as a regular trend that 
can be projected or extrapolated with certainty, as shown in figure 
28C, over the time span occupied by the stepped pumping rates. 
Applying the Theis nonequilibrium formula to define each of the 
'drawdown components given in equation 44, there follows, 

s`1 T.6 
(AQ1W(u)1+AQ2W(u)2+AQ3W(u)3 . . . . . +AQnW(U),J- (45) 

The corresponding u values are 

1 . 87r2S . _ 1 . 87r2S . _1 . 87r2S .�1_
2-1 

T(t-t1)' 
u2 

T(t - t2) ' u'T(t-t3)' 
. . . ; 87r2S

'1,6n-T(t-t,,) . (46) 

Therefore, 
Ft- t ' , t ­ t1 . t- t1 

u2-u1 It-t31~, u3=u1 t-t. 

Inspection of equations 46 and 47 should indicate that virtually an 
infinite number of type curves can be constructed for solving equation 
45 . For practical purposes, however, only a family of curves need 
be constructed. 

It can be seen from equations 46 that the relation between the u 
values is dependent on the value of t selected . For any given value 
of t, the values of u are proportional to the constant 1 .87r2S/T. 
Therefore the family of curves must be constructed using t and 

n 
1 .87 r2SI Tas independent variables and Z OQW(u) as the dependent 

variable . This is accomplished by first assuming several values of 
1 .87 r2SITfor a particular value oft. Values of u1 are then computed 
for that t for the assumed values of 1.87r2SIT using the first of equa-
tions 46 . Equations 47 are then used to compute values of ul, 
u3 . . . u,t for each assumed value of 1 .87r 2SIT. These in turn 
determine (see table 2) the corresponding W(u) values, which are 
used to compute the quantity in brackets (the sum of all the OQW(u) 
terms) in equation 45 . Thus a set of values is produced for the sum 
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of the AQW(u) terms, corresponding with the assumed values of 1 .87 
r2SIT and all are related to one assumed value of t. This computing 
procedure is repeated for each value of t in a whole set of t values 
selected to span a time range that will permit drawing the family of 
type curves, shown schematically in figure 29, through the same time 

a 
4 

o,
0 

log t 
FIOIIBE 29.-Schematic plot of family of type curves for problems involving continuously varying discharge . 

interval covered by the drawdown observations in the aquifer. The 
field-data plot of log s versus log 1/t is superposed on the family of 
type curves, taking care that the logarithmic time scales of the two 
graphs are exactly matched . The data plot is then shifted along the 
n 

OQW(u) axis until the position is found where the curvature of the 

data plot is identical with an underlying type curve or with an inter­
polated type curve position . It follows that this serves to identify
the data curve with a specific value of 1 .87r2S/T. Values of s and 
n 

r, OQW(u) are read from a point common to both graphs and entered 

in equation 45 to solve for T. The computed value of T can then be 
used with the value of 1 .87r 2SIT to solve for S. Should several 
observation wells at different radii be available, it may be more con­
venient to construct a type curve suitable for matching with the 
observed drawdown profile. For a selected observation time, values 
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n 
Of 7, OQW(u) and 1.87r2S/Tare taken from figure 29 and used to con­

n 
struct a new type curve by plotting log AQW(u) against log (1 .87 

r2S/r . This new logarithmic type curve, drawn for a selected time, 
t, can be matched with a logarithmic data plot of s versus r2, drawn 
for the same time t. 

INTERMITTENT OR CYCLIC DISCHARGE 

Analysis of drawdown data by means of the methods described in 
the preceding section is likely to require a large amount of calculation . 
However, for certain specific kinds of discharge variations the analysis 
can be simplified considerably. The detailed solutions of two specific 
cases have been described by Theis and Brown (1954) . One of the 
problems solved was that of computing the drawdown occurring in a 
well being operated in a regular cycle of pumping at a constant rate 
for a given time interval, then resting for a given time interval . 
Their final equation, in the usual Survey units, for drawdown in the 
pumped well after n cycles of operation is 

264Q 1 .2 .3 . . . . . . . . n 
sn= 

T togoo 
(1-p)(2-p)(3-p) . . . . (n-p) (8) 

where p is the fractional part of the cycle during which the well is 
pumped . In part, the simple form of equation 48 was obtained by 
utilizing the semilog approximation (eq. 4) of the Theis nonequilib 
rium formula. Many regular operational cycles are easily generalized 
and analysis may lead to a final expression comparable, in simplicity, 
to equation 48 . 

CHANNEL METHODS-LINE SINK OR LINE SOURCE 
CONSTANT DISCHARGE 

NONSTEADY STATE, NO RECHARGE 

As early as 1938 Theis (Wenzel and Sand, 1942, p . 45) had developed 
a formula for determining the decline in artesian head at any distance 
from a drain discharging water at a uniform rate . In 1949 Ferris 
(1950) derived a formula that can be shown to be identical with the 
one derived by Theis. The development is based on the following 
assumptions : (a) the aquifer is homogeneous, isotropic, and of semi-
infinite (bounded on one side only by the stream) areal extent ; (b) 
the discharging drain completely penetrates the aquifer; (c) the aqui-
fer is bounded by impermeable strata above and below ; (d) the flow 
is laminar and unidimensional ; (e) the release of water from storage 
is instantaneous and in proportion to the decline in head ; and (f) the 
drain discharges water at a constant rate . 
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Slightly modifying the form used by Ferris, the drain formula can 
be written nondimensionally, as 

-U2 z 
eQax -1

+ 2 
fo

2VMS e-uadus- (49)
2T 11 

where 

u=x 
V4Tt' 

or 
2- x2S 
u (50)

4Tt~ 

Ferris suggested that the quantity in brackets be written symbolically, 
for convenience, as D(u) which is to be read "drain function of u," and 
in this report the subscript q will identify it with the constant dis­
charge situation. Equations 49 and 50 can therefore be rewritten 
in abbreviated form, in the usual Survey units, as 

s_720Q6 
D(u~, (51) 

and 
1 .87x2S

u2- (52)
Tt ' 

where 
s=drawdown, in feet, at any point in the vicinity of the drain dis­

charging at a constant rate, 

Qn =constant discharge (that is, base flow) of the drain, in gallons per 
minute per lineal foot of drain, 

x=distance, in feet, from the drain to the point of observation, 
t=time, in days, since the drain began discharging, 

and S and Thave the meaning and units already defined. 
From inspection of equations 51 and 52 it follows that if s can 

be measured at several values of t, and if x and Qt, are known, then S 
and T can be determined. However, the occurrence of two unknowns 
and the nature of the drain function make an exact analytical solution 
impossible and trial solution most laborious. A graphical solution 
of superposition, similar to the one devised by Theis for solution of 

.his nonequilibrium formula, affords a simple solution of equation 51 
The first step in constructing the type curve is to assume values of 

u and compute the corresponding values for D(u), from equation 49, 
which can be done easily with the aid of published tables (U.S . Natl . 
Bur. of Standards, 1954). Values of D(u), and u2 for values of u 
from 0 .0510 to 1 .0000 are given in table 5. These data are then used 
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to prepare a type curve on logarithmic coordinate paper by plotting 
values of u or u2 against values of D(u) Q . Such a. type curve is shown 
in figure 30 and, for convenience in subsequent computation, values 
of D(u), have been plotted against values of u2 . 
Rearranging equations 51 and 52 and taking the log of both sides, 

there follows : 

log 8= [log 720~°x]+logD(u) Q , (53) 

and 
(54)logt2=Clog 1 .87 S]-}-log u2. 

For a given test, the bracketed parts of equations 53 and 54 are con­
stant and log D(u), is related to log u2 in the manner that log s is re­
lated to log (x 2 /t) . Therefore, if values of the drawdown, s, are 
plotted versus x2lt on logarithmic tracing paper having the same log 
scale as the type curve for the drain formula, the curve of observed 
data will be similar to the type curve. The data curve may thus be 
superposed on the type curve, with the coordinate axes held parallel, 
and translated to the position where the observed data coincide or 
make the best fit with the type curve. When this matching position 
has been found, an arbitrary point is selected, common to both curves, 
and the coordinates of this common point are used to solve equations 
53 and 54 for Tand S. 

TABLE 5.-Values of D(u)a, u, and u2 for channel method-constant discharge
formula .-

(Data for plotting type curve (fig . 30) for equation 51 . After Ferris (1950)1 

u 
0.0510 

u2 
0.0026 

D(u), 
10.091 

u 
.2646 

u9 
.070 

D(u), 
1.280 

.0600 .0036 8.437 .3000 .090 1.047 

.0700 .0049 7.099 3317 .110 .8847 

.0800 .0064 6.097 :3605 .130 .7641 

. 0900 .0081 5.319 .4000 .160 .6303 

.1000

.1140 

.1265 
.010
.013 
.016 

4.693 
4.013 
3.531 

.4359 

.4796 

.5291 

.190 

.230 

.280 

. 5327 

.4310 

.3516 
.1414 .020 3.069 .5745 .330 .2895 
.1581 .025 2.657 .6164 .380 .2426 

.1732 

.1871 

.2000

.2236 

.2449 

.030 

.035 

.040 

.050

.060 

2.355 
2.120
1.933
1.648
1.440 

.6633 

.7071 

.7616

.8124 
.8718 

.440 

.500 

.530 

. 660 

.760 

.1996

.1666 
1333 

:1084 
.08503 

. 9487 .900 .06207 
1.0000 1.000 .05026 

Despite the restrictive assumptions upon which it is based, the 
drain formula, as it has been called, has been applied successfully in 
determining the coefficients of transmissibility and storage of an 
aquifer and in estimating the pickup by or leakage from drains . 
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Discussion and comparison of various ways of plotting the type 
curves for the drain function D(u), and the well function W(u) (see
figures 30 and 23) are given by Warren (1952, written communication) . 

CONSTANT HEAD 

NONSTEADY STATE, NO RECHARGE 

By R. W. STALLMAN 

The decline in artesian head at any distance from a stream or drain, 
whose course may be approximated by an infinite straight line, sub­
sequent to a sudden change in stream stage, can be found by borrowing
the solution to an analogous heat-flow problem (Ingersoll, Zobel, and 
Ingersoll, 1948, p. 88) . It is assumed that (a) the stream occurs 
along an infinite straight line and fully penetrates the artesian aquifer ; 
(b) the aquifer is semi-infinite in extent (bounded on one side only by
the stream) ; (c) the head in the stream is abruptly changed from zero 
to so at time t=0 ; (d) the direction of ground-water flow is perpen­
dicular to the direction of the stream ; and (e) the change in the rate 
of discharge from the aquifer is derived from changes in storage by
drainage after t=0. Substituting ground-water nomenclature in the 
heat-flow equation, the distribution of drawdown in the artesian 
aquifer is found to be 

2so x 

so-8 2 Tcls e-'~'du,
=~J0 

or 
~f 

s.so [I--
2 Tt/S e-u'du -soD(u)n, (55)

'~ o 

where D(u),, replaces the quantity in brackets and represents the drain 
function of u for the constant head situation, and where 

u2_X
2S 

(56)4Tt~ 

In the foregoing expressions x is the distance from the stream or drain 
to the point at which the decline in artesian head, s, is observed or 
known, and so is the abrupt change in stream stage at t=0 . Other 
symbols are as previously defined. (Note : In equation 55 the integral
expression and its coefficient constitute what mathematicians have 
labelled the error function, written as "erf." The bracketed portion
of equation 55 is identified as the complementary error function, written 
as "cerf" .) 
The relation expressing the discharge from the aquifer, per unit 

length of stream channel, Qb, resulting from the change in stream stage, 



���

THEORY OF AQUIFER TESTS 127 

can also be found in texts on heat flow (Ingersoll, Zobel, and Ingersoll, 
1948, p. 90) . When written using ground-water notation, and multi­
plying by 2 to account for the water contributed from both sides of 
the stream the equation has the form 

(57) 

Equations 56 and 57 now afford a means for evaluating the two un-
knowns Tand S, inasmuch as the ratioS: Tis determined from equation 
56 and the product ST is obtained from equation 57 . 
Comparing equations 55 and 56 the use of the method of superposed 

graphs, described in previous sections, is again indicated as the most 
logical means of solution because log s evidently varies with log xllt in 
the same manner that log D(u),, varies with log u2. Thus the solution 
of equation 56 for the ratio S : Twill evidently require matching a log­
arithmic data plot of values of's versus corresponding values of x2lt 
(or simply ilt if only one observation well is available) to a logarithmic 
type curve prepared by plotting values of D(u),, versus corresponding 
values of u2. Such a type curve is shown in figure 31, prepared from 
the drain function values given in table 6 . 

If equations 56 and 57 are rewritten using the usual Survey units 
(except for Qb which is the base flow in gallons per minute per foot of 
stream length), they become 

_1 .87x 2S 
u2_ ' (58)

Tt 
and 

Qb=2 .15X10-3s0 T(59)t
TABLE 6.-Values of D (u) b, u, and ua for channel method-constant head formula 
[Data for plotting type curve (fig . 31) for equation 55. Prepared by R . W . Stallman . Values of 
D(u)g,, for selected values of ul or u, were computed with the aid of U .S. Natl . Bureau of Standards tables 
(1954)] . 

u u3 D(u)a u u2 D(u)A 
0.03162 0.0010 0.9643 0 .6325 0.40 0 .3711 
.04000 .0016 .9549 .7746 .60 .2733 
.05000 .0025 .9436 .8944 .80 .2059 
.06325 .0040 . 9287 1 .000 1 .00 .1573 
.07746 .0060 .9128 1.140 1 .30 .1069 

.08944 .0080 .8994 1.265 1 .60 .0736 

.1000 .010 .8875 1 .378 1 .90 .0513 

.1265 .016 .8580 1 .483 2.20 .0359 

.1581 .025 .8231 1 .581 2.50 .0254 

.2000 .040 .7730 1 .643 2.70 .0202 

.2449 .060 .7291 1.732 3 .00 .0143 

.2828 .080 .6892 1.789 3 .20 .0114 

.3162 .10 .6548 

.4000 .16 .5716 

.5000 .25 .4795 
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FioURE 31 .--Logaritbmic graph of the drain function D(u)g, for channel method-constant head . 
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Equations 55 and 57 define the changes in head and flow which occur 
in the aquifer if the stream stage is abruptly changed. Therefore 
the stipulation of no recharge implies only that the rate of recharge 
must be constant for a sufficient interval of time, so that the regional 
water-level trends can be extrapolated with accuracy throughout the 
period in which the changes in the aquifer are being observed . 

Water-level data from wells near the stream may, in some field 
situations, yield erratic results, depending on the flow pattern in the 
aquifer in the vicinity of the stream. For example, if the stream 
only partly penetrates the aquifer the flow lines in the aquifer will 
obviously bend upward as they approach the stream, thereby produc­
ing vertical components of flow . Thus the smaller the distance x, 
between observation well and stream, the greater the errors inherent 
in the observed water levels . This in turn means that as x decreases, 
the error in the computed value of SIT increases . It should also be 
realized that instantaneous or abrupt lowering of stream stage is 
seldom possible, which means that the determination of a reference 
or zero time is difficult. Thus observations made a short time after 
the stream stage is lowered may be somewhat unreliable . In general, 
therefore, it would seem prudent to favor the data collected at com­
paratively large values of x and large values of t to provide the most 
reliable basis for analysis . 
Where it is known that the stream or drain penetrates only a part 

of the aquifer thickness, the following adjustment procedure, though 
not yet proven by field trial, may offer a means for determining more 
realistic values for T and S. It should be evident that in a field 
situation of this kind, the change in head in the stream channel is 
not as effective in producing head changes throughout the aquifer 
as when the stream is fully penetrating. Near the stream, ground­
water levels adjust quickly to changes in stream stage, but part of 
the adjustment is caused by the bending of the flow lines. It can 
be assumed, however, that at some relatively short distance xo away 
from the stream the bending of the flow lines in the aquifer will be 
small enough so that the effects on the head values may be neglected . 
Thus, for distances greater than xo the flow lines may be considered 
parallel-that is, flow is essentially one-dimensional . The change 
in head in the aquifer, at the distance xo, may therefore be considered 
as an effective value of so and it is related to the changes in head 
throughout the aquifer, for all distances greater than xo, in the manner 
described by equations 55 and 56 . 

In effect this reasoning means that the real partly penetrating 
stream, in which the stage was abruptly changed an amount so, is 
being replaced (at the distance xo) by a theoretical fully penetrating 
stream in which the stage change may be regarded as essentially 
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SECTION VIEW OF IDEAL AQUIFER SUBJECT TO UNIFORM ACCRETION, 
BOUNDED BY PARALLEL STREAMS 

Water table 

0 a x 2'a 
�, FIoW 

---=--=Confining ~-_-=.material -----_-____-_

(At1er Jacob, 1943) 

B. NOMENCLATURE FOR MATHEMATICAL ANALYSIS OF PROFILE SHOWN IN SKETCH 

FIGTIRE 32.-Section views for analyzing steady-state flow in hypothetical aquifer of large thickness with 
uniform accretion from precipitation . 

abrupt but of a lesser magnitude which shall be termed an effective 
value of so. 

This socalled effective value of so can be computed from equation 
55 after superposing the data and type curves in the manner 
already described . The critical distance x0 can also be computed, 
using the coordinates for a point common to the matched data and 
type curves, if more than one observation well is available . For 
each observation well the ratio SIT is computed, using the distance 
from the well to the real stream channel as a first estimate in equa­
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tion 56 . If the SITvalues thus determined are not alike, the equation 
for u2 is adjusted to read as follows : 

u2- 1 .87(x-x°)2S. 
Tt 

An estimate of x° is then made, and SIT values for each observation 
well are recomputed using the effective distance to the stream (x=x°) . 
If the data and field conditions are sufficiently ideal to permit an 
accurate analysis, several assumed values of x° will indicate the one 
that will produce the closest agreement in the computed values of 
SIT. 

It is pointed out that it is difficult to assess the true value of these 
adjustment procedures, inasmuch as the opportunity for applying 
them to a specific field problem has not yet been afforded . 

STEADY STATE, UNIFORM RECHARGE 

A problem of considerable practical interest is that of estimating 
the base flow of streams, or the effective average rate of ground-water 
recharge, from the shape of the water table. Consider the case of an 
aquifer bounded on two sides by fully penetrating parallel streams of 
infinite length as shown in figure 32A . It is assumed that the aquifer 
is homogeneous and isotropic, and that the aquifer is recharged at a 
rate of accretion, W, that is constant with respect to time and space. 
Flow is therefore one-dimensional and a ground-water divide is cre­
ated at distance a, midway between the streams (see figure 32B) . 
Jacob (1943, p. 566) has given the equation of steady-state profile as 

(2 
°-(2T) ax a2 J~ 

or 
T ax x2 

(60)
Wh°-2h' 

where 
W=constant rate of recharge to the water table ; 
a=distance from the stream to the ground-water divide ; 
x=distance from the stream to an observation well ; 
h° =elevation of the water table, at the observation well, with 

respect to the mean stream level . 
It is frequently convenient to express the rate of recharge, W, in 

inches per year, while a, x, and h° are expressed in feet, and T is in 
the usual Survey units. Equation 60 is then rewritten in the form 

2 
T=1.71(10 -3) W(ax (61)

-2ho 
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In the absence of artificial withdrawal of water from an aquifer, 
the net recharge must equal the natural discharge, provided changes 
in storage are insignificant. Although it is recognized that under 
natural conditions there are variations of W in time, it should be 
apparent that if average or mean ground-water levels are used in 
equation 61, a figure for Wequivalent to an effective average accretion 
rate will result . 

Equation 61 can be solved if the average (in time) contribution, 
Qt, to the base flow of the stream, per unit length of channel can be 
determined from stream-flow measurements . If Qb is expressed in 
gallons per minute per foot of stream channel, then 

W=8.44(105) Qb~ 
2a' 

or 

W=4.22(10 5)b(62) 

Equation 62 permits determination of Wwhich can be used in equation
61 in computing the value of T. 

In many field situations, of the type postulated here, general 
appraisal of the occurrence of ground water may indicate that the 
ground-water divide is parallel to the stream course, although the 
distance a will be unknown. If two observation wells are available, 
it is possible to compute a value for a and a value for the ratio 586T1W. 
If a larger number of observation wells is available, a graphical so 
lution may be used to solve for the values of a and 586T/W. The 
procedure requires observation of the distances, x, from the stream to 
the individual observation wells and the corresponding values of ho. 
Using the data from one observation well, and arbitrarily selecting 
several values of a, the corresponding values of 586T/W are computed 
after appropriate substitution in equation 61 . The computed values 
of 586T/W are plotted against the corresponding assumed values of 
a and a smooth curve is drawn through the plotted points. In similar 
fashion a curve is drawn on the same graph for each observation well . 
The coordinates of the single point at which all the curves intersect 
give the particular values of a and of 586T/W which will satisfy all 
the available data . 

SINUSOIDAL HEAD FLUCTUATIONS 

Werner and Noren (1951) and later Ferris (1951) independently 
analyzed the problem of fluctuations of water levels in wells in response 
to sinusoidal changes in stage of nearby surface-water bodies. The 
solution to this general type of problem has long been available in 
other fields of science and as Ferris indicates it may conveniently be 
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found in reference works on heat flow such as the text by Ingersoll,
Zobel, and Ingersoll (1948, p . 46-47) . Translated into ground-water 
terms, the solution requires an isotropic semi-infinite artesian aquifer
of uniform thickness in full contact, along its one boundary, with a 
surface-water body that may be considered an infinite line source . 
Within the aquifer the change in water storage is assumed to occur 
instantaneously with, and at a rate proportional to, the change in 
pressure . Ferris (1951, p . 3) shows that the equation for the range
of ground-water fluctuation in an observation well, a distance x from 
the aquifer contact with the surface-water body, whose stage is chang­
ing sinusoidally, has the nondimensional form 

(63) 

or, in the usual Survey units, 

s,=2so e - l . az~lsltoT~ (64) 
where 

s,=range 6f ground-water stage, in feet ; 
so=amplitude or half range of the surface-water stage, in feet ; 
x =distance from the observation well to the surface-water 

contact with the aquifer ("suboutcrop"), in feet ; 
t o =period of the stage fluctuation, in days ; 
S=coefficient of storage ; and 
T=coefficient of transmissibility, in gallons per day, per foot . 

For convenience equation 64 can be written 

2.1 ~YltoT= -logio (sr/2so) (65)x 

The form of equation 65 suggests a semilogarithmic plot of the 
log of the range ratio, s,/2so, for each observation well, versus the 
corresponding distance, x, as an expedient method of analyzing the 
observed data . The right-hand member of equation 65 represents
the slope of the straight line that should be defined by the plotted
data . If the change in the logarithm of the range ratio is selected 
over one log cycle of the plot, equation 65 becomes 

2.1VS/t,T=- 1 
or 

.4(Ax)ZST-4.44 (66)to 

If the field conditions fulfill the assumptions made in deriving equation 
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66, the straight line drawn through the data on the semilogarithmic 
plot should pass through the origin of the coordinate axes-that is, 
should intercept a value of rl2so=1 at a value of x=0. For the case 
of a stream of substantial width, partially penetrating the artesian 
aquifer, this intercept will usually be found at negative values of x, 
indicating an "effective" distance offshore to the suboutcrop . This 
effective distance mayor may not have physical significance depending 
on the nature of the flow field in the vicinity of the stream. For 
example, if the stream does not cut through the upper confining bed, 
stage changes in the surface-water body may still provide, through the 
changes in loading that are involved, a source of sinusoidal head 
fluctuation in the artesian aquifer along the stream location . Unless 
the loading changes are completely effective (100 percent tidal 
efficiency) in producing a stage range of 2so at x=0 in the aquifer, 
the straight-line intercept with the x axis will again be at some negative 
value of x, and will in part be an indication of the efficiency with 
which the aquifer skeleton accepts the changes in loading. However, 
it should be observed that regardless of the exact value of so in the 
aquifer, at x=0, the slope of the data plot described is unaffected . 
Therefore the T value computed by means of equation 66 will be 
correct regardless of the actual value in the aquifer of so. 

It is seen from equation 66 that it is necessary to know S in order 
to solve for T. Frequently, when the coefficient of storage is not 
known, it is possible to make a reasonable estimate of its value by 
studying the well logs and water-level records. 
The lag in time of occurrence of a given maximum or minimum 

ground-water stage, following the occurrence of a similar surface-
water stage, is given by Ferris (1951) as 

_x tos (67)tl-
2~rT' 

where t, is the lag in time . Solving this equation for the coefficient 
of transmissibility, and rewriting in terms of the usual Survey units, 
there follows 

2 

T=0.60toS (tl) (68) 

The only variables in equation 68 are evidently x and tl . Thus an 
arithmetic plot is suggested with the value of the distance, x, for each 
observation well, plotted against the corresponding value of the time 
lag, t. The slope of the straight line that should be defined by these 
plotted points will then give the value of xlt,, which appears to the 
second power in equation 68 . If the straight line that is drawn 
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through the plotted points should intersect the zero-timelag axis 
at a negative value of x it may be an indication of the effective distance 
offshore to the suboutcrop . 

In those situations where the aquifer is not fully penetrated or 
where it is under water-table (unconfined) conditions, the methods 
of analysis described in this section will be satisfactory if (a) the 
observation wells are far enough from the suboutcrop so that they are 
unaffected by vertical components of flow and (b) the range in fluctua­
tions is only a small fraction of the saturated thickness of the 
formation . 

AREAL METHODS 
NUMERICAL ANALYSIS 
By R. W . STALLMAN 

The equations presented in the preceding sections of this paper 
were derived by means of the calculus . Darcy's law combined with 
the equation of continuity (Rouse, 1950, p. 326) yielded the basic 
differential equations that described states of flow . In turn, solutions 
to these differential equations were found that satisfy the boundary 
conditions of a particular problem . Certain generalizations were 
made in regard to the boundary conditions so as to provide rather 
specific equations, which can be used with convenience to obtain a 
solution to the field problem. Among these generalizations are the 
assumptions of a constant head or discharge at some point or line, 
homogeneity of the aquifer, simple geometric form or shape of the 
aquifer, and complete penetration of the well or stream . Certainly 
for many field problems these conditions are fulfilled to a sufficient 
degree that the available formulas can be used to obtain reliable 
approximations of the values of T, S, or W. However, the ground­
water hydrologist frequently encounters problems for which the 
complicated boundary conditions cannot be expressed by simple 
mathematical relations . Furthermore, the complicated boundary 
conditions related to a given field problem seldom recur in nature 
in the same combination. Thus it could be poor economy to spend 
a large amount of time and energy deriving complicated analytical 
equations whose application might be limited to one problem . Under 
such circumstances it may be found more expedient to use numer­
ical methods of analysis for the quantitative investigation . 
Numerical methods have been used in other sciences for some time for 
the same purpose. Basic formulas and procedures have been de­
scribed by Southwell (1946, 1940) and many of his colleagues (Shaw, 
1953) . Scarborough (1950) and Milne (1953) have written extensively 
on the same subject and an application of numerical methods to 
ground-water investigations has been described by Stallman (1956) . 
The formal derivation of analytical equations for describing ground­
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water movement involves application of the rules of calculus for 
integrating, or summing, an infinite set of infinitesimal changes in 
head between two or more points in the flow region under study. 
In lieu of application of the rules of calculus to perform this addition 
conveniently, it would be possible to accomplish the same thing 
simply by addition of the infinite set of infinitesimals . The latter 
method is, of course, impractical unless approximations are intro­
duced . Thus an area may be calculated by considering that it is 
composed of small but finite parts, each having an area (Ax)(Ay) . 
By means of this more coarse subdivision of the area, the problem is 
reduced to the addition of a sensibly small and finite set of component 
parts instead of the infinite set of infinitesimal areas (dx) (dy) postu­
lated by the orthodox calculus . In brief this constitutes the basis 
of numerical analysis as applied in finding solutions to differential 
equations : the substitution of finite entities for the differential forms 
that appear in the fundamental differential equations. 

Consider, for example, the differential equation describing two-
dimensional unsteady flow in a homogeneous and isotropic aquifer, 
subject to recharge at a steady rate of accretion W. It can be shown 
that this equation has the form 

a2h+a2h-
(T 
S bh W 

axeaye) b~T' 
(69) 

where h is the head at any point whose coordinates are x, y. Let the 
differential lengths dx and dy be expanded so that each can be con­
sidered equivalent to a finite length w, and similarly let dt be con 
sidered equivalent to At . A plan representation of the region of flow 
to be studied may then be subdivided by two systems of equally 
spaced parallel lines at right angles to each other . One system is 
oriented in the x direction and the other in the y direction and the 
spacing of the lines equals the distance w (see fig. 33) . A set of 5 
gridline intersections or nodes, selected in the manner shown on 
figure 33, is called an array. Accordng to Southwell (1946, p. 19) 
the first two differentials in equation 69 can b,: expressed, in terms of 
the head values at the nodes in the array, in the following fashion : 

_a 2h_h,+h,-2h, 
6X2' w2 

and 
a2h h2+h4-2h,aye ­

w2 

where the subscripts of h refer to the numbered nodes of figure 33 . 
Substituting these equivalent expressions for the first two differentials 
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NOTES ; 

Filled circles indicate boundary nodes selected 
to approximate irregular boundary of the area 

The grid spacing w is an approximation of the 
differential distances dx and dy 

The five numbered nodes constitute an array 

FIGURE 33.-Finite grid and nomenclature used in numerical analysis . 

in equation 69, and letting bhlat be considered equivalent to Oho,/At, 
there follows 

h 7hi+h2+hs+h4-oho=[ST ~A, T w2 , (70) 

where Oho, is the change in head which occurs at node 0 through the 
time interval At . Depending on the type of data available, equation 
70 can be used to compute the ratios S/T and W/T, or the head 
distribution in time and space, in an aquifer of given size and shape. 
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Furthermore, the calculations involve only the use of simple arith­
metic. 

In working out a solution where a finite difference equation such as 
equation 70 is being applied to a problem in which the head distribu­
tion is required, the primary aim of the computing methods is to find 
the particular head values at all the nodal points (like points 0-4 of 
figure 33) such that the finite difference equation is satisfied at all 
nodes simultaneously . This head distribution can be found either 
by "relaxation" or "iteration" methods of numerical analysis . The 
computations are begun by assuming head values for all the nodes in 
the flow system . These initial estimates will not ordinarily satisfy
the finite difference equation and will require revision so that the 
equation will be satisfied at all points in the grid . Refinement of the 
head values is continued until accuracy is considered to be sufficient 
for the needs of the problem . 

If the refinement is made using a routine adjustment procedure,
it is termed an iteration method ; if it is made by approximation, it is 
termed a relaxation method. Consider the steady-state form of 
equation 70, which is 

hi +h,+h8+h4-4ho+ (71) 

Assume that it is desired to find the head distribution in an aquifer of 
known size and shape, the flow conditions (and/or head values) being
known along its perimeter, and the values of W and T, or their ratio,
being known . Substituting in equation 71 the initial set of assumed 
head values for nodes 0-4, and the known value of (W/T)w2 there 
follows 

hii+h2i+h31+h4i-4hoi+(T )w2=Ro, (72) 

where the subscript i is used to set apart or distinguish the head values 
that are initially assumed. The term Ro is the residual at node zero ; 
in other words, it is the remainder resulting from summation of the 
assumed and known values on the left side of the equation . Inasmuch 
as it is virtually impossible. to assume, an initial set of head values such 
that the summation indicated in equation 71 is zero, there will almost 
inevitably be a remainder or residual as shown in equation 72 . This 
residual, Ro , may be thought of as an indication of the amount and 
direction of excess curvature on the piezometric surface defined by
the assumed heads. The value of Ro is also an indication of the amount 
by which h0i must be changed so that in the next trial summation of 
head values the result will more closely approach the zero value 
required for complete satisfaction of equation 71 . 
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It can easily be shown that if the head at the zero node is changed 
by an amount AN=-Ro/4, the residual at that node will be reduced 
to zero . However, it should be kept in mind that equation 71 is to 
be tried on each array in the grid net and that residuals will appear 
at many if not all of the other nodes . Thus a head adjustment at 
one node will affect residuals at other nodes, and conversely subse­
quent head adjustments at adjacent nodes will affect the residual at 
the first zero node . Accordingly, several circuits must be made 
through the net before the residual values are reduced to zero or 
nearly zero. Successive circuits of nodal head adjustments amounting 
to -Ro/4, applied regularly over the net, constitute an iterative 
process. With practice the computer will recognize that the distribu­
tion of residuals can be improved more efficiently by either a larger 
or smaller head adjustment than indicated by -Ro/4. Applying such 
improvement tempered by judgment gained from experience is a 
relaxation method . 

FLOW-NET ANALYSIS 
By R . R . BENNETT 

In analyzing problems of ground-water flow, a graphical represen­
tation of the flow pattern is of considerable assistance and often 
provides the only means of solving those problems for which a math­
ematical solution is not practicable. The first significant development 
in graphical analysis of flow patterns was made by Forchheimer (1930) . 
A "flow net," which is a graphical solution of a flow pattern, is 

composed of two families of lines or curves . One family of curves 
represents the streamlines or flow lines, where each curve indicates 
the path followed by a particle of water as it moves through the 
aquifer in the direction of decreasing head . Intersecting the stream­
lines at right angles is a family of curves termed equipotential lines, 
which represent contours of equal head in the aquifer. 
Although the real flow pattern contains an infinite number of flow 

lines and equipotential lines, it may be conveniently represented by 
constructing a net that uses only a few of those lines . The flow lines 
are selected so that the total quantity of flow is divided equally be­
tween adjacent pairs of flow lines ; similarly the equipotential lines 
are selected so that the total drop in head across the system is evenly 
divided between adjacent pairs of potential lines. 
The change in potential, or drop in head between two equipotential 

lines in an aquifer, divided by the distance traversed by a particle of 
water moving from the higher to the lower potential determines the 
hydraulic gradient . Recognizing that this movement of a water par­
ticle is governed in part by the proposition that the flow path adopted 
will be the one involving the least work-that is, the shortest possible 
path between the two equipotential lines in question-it follows that 
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the direction of water movement is everywhere synonymous with 
paths that are normal to the equipotential lines. Hence the system
of flow lines must be drawn orthogonal to the system of equipotential
lines. 
A flow net constructed with the foregoing principles in mind is a 

pattern of "rectangles" in which the ratio of the mean dimensions of 
each "rectangle" is constant . If the net is constructed so that the 
sides of each rectangle are equal, then the net is a system of "squares." 
It should be recognized, however, that in flow fields involving curved 
paths of flow, the elemental geometric forms in the net are curvilinear 
and thus are not true squares ; however, the corners of each "square" 
are right angles and the mean distances between the two pairs of 
opposite sides are equal. If any one of these elemental curvilinear 
"squares" is repeatedly subdivided into four equal parts the sub­
divisions will progressively approach the shape of true squares . 
The proper sketching of a flow net by the graphical method is 

something of an art that is learned by experience ; however, the fol­
lowing points summarized from a paper by Casagrande (1937, p . 
136-137) may be helpful to the beginner : 
1 . Study the appearance of well-constructed flow nets and try to 

duplicate them by independently reanalyzing the problems they
represent. 

2 . In the first attempts at sketching use only four or five flow channels . 
3 . Observe the appearance of the entire flow net ; do not try to adjust

details until the entire net is approximately correct. 
4 . Frequently parts of a flow net consist of straight and parallel

lines, which result in uniformly sized true squares . By starting
the sketching in such areas, the solution can be obtained more 
readily. 

5. In flow systems having symmetry (for example, nets depicting
radial flow into a well) only a section of the net need be con­
structed, as the other part or parts are images of that section. 

6. During the sketching of the net, keep in mind that the size of the 
square changes gradually; all transitions are smooth and, where 
the paths are curved, are of elliptical or parabolic shape. 

Taylor (1948) recommends a somewhat different procedure for 
sketching flow nets . This procedure, called the procedure of explicit 
trials, has been found to have value in developing intuition for flow 
net characteristics . In this method a trial equipotential or flow line 
is established and the entire net completed as if that trial line were 
correct . If the completed net is not correct, the initial trial line is 
resketched and a new net is constructed . The adjustment of the trial 
line is judged from the appearance of the entire net and how well it 
conforms to the boundary conditions of the system . 
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For steady flow, with a particular set of boundary conditions, only 
one flow net exists . If at some subsequent time the boundary condi­
tions are altered, then after sufficient time has elapsed to reestablish 
the steady state, a different flow pattern would be developed and 
again there would be only one possible solution for the new set of 
boundary conditions . Thus before attempting to construct a flow 
net, it is important that the boundary conditions be established and 
carefully described . For example, consider the aquifer shown in fig­
ure 34, bounded by an impermeable barrier paralleling a perennial 
stream . Line AB, designating the stream, is obviously an equipo­
tential line along which the head is equal ; line CD marking the 
impermeable barrier, is evidently coincident with the limiting or 
boundary flow line . Accordingly, the equipotential lines will adjoin 
the barrier at right angles . The discharge through any channel or 
path of the flow net may be obtained with the aid of Darcy's law, 
one variation of which, as has been previously shown, may be written 
in the form 

Q=PIA. 

For convenience in applying this variation of Darcy's law, consider 
a unit width or thickness of the aquifer, measured normal to the 
direction of flow indicated by L in figure 34-that is, normal to the 
plane of the diagram. The preceding equation may then be rewritten 
for this unit thickness (in this example) of aquifer, and for one flow 
channel through the net as 

Aq=Plb, (73) 

where Oq represents the flow occurring between a pair of adjacent 
flow lines (one flow channel) and b is the spacing of the flow lines. 
If L represents the spacing, and oh the drop in head, between the 
equipotential lines, equation 73 becomes 

Aq=PAh CL) (74). 
Inasmuch as the flow net (figure 34) was constructed to comprise a 
system of "squares" the ratio b/L is equal to unity and the same 
potential drop occurs across each "square" . It follows then from 
equation 74 that the same incremental flow, Oq, occurs between 
each pair of adjacent flow lines . If there are of flow channels, the 
total flow, q, through a unit thickness of the aquifer, is given by 

q=nfAq. (75) 
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Fie-URx 34.-Flow net for a discharging well in an aquifer bounded by a perennial stream parallel to an impermeable barrier . 
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If there are nd potential drops, the total drop in head, h, is given by 

h=ndAh . (76) 

Substituting in equation 75 the values of Oq and oh given by equations 
74 and 76 respectively, there follows 

q=nr Ph. (77) 
d 

Noting that q represents the total flow through a unit thickness of 
the aquifer, the equation for total flow through the full thickness 
of the aquifer becomes 

Q=I
Phm, (78) 

where Q=flow through full thickness of the aquifer in gallons per 
day ; 

nf=number of flow channels ; 
nd =number of potential drops ; 
P=coefficient of permeability of the aquifer material, in 

gallons per day per square foot ; 
m=saturated thickness of aquifer, in feet ; 
h=total potential drop, in feet ; and 

Pm=transmissibility of the aquifer, in gallons per day per foot . 
The pi eceding discussion of the graphical construction of flow nets 

concerns two-dimensional flow fields in homogeneous and isotropic 
media. The graphical construction of flow nets for three-dimensional 
problems generally is impracticable ; however, many ground-water 
problems of a three-dimensional nature can be reduced to two 
dimensions without introducing serious errors . 
For two-dimensional problems involving simple anisotropy, such 

as a constant difference between the vertical and horizontal perme­
ability, or a directional area) transmissibility, the flow net can be 
constructed by the conventional graphical procedure (system of 
squares) provided the flow field is first transformed to account for the 
anisotropy . If the values of maximum or minimum permeability 
(or transmissibility) are designated P.Bx, and Pm,n, all the dimensions 
in the direction of P... must be reduced by the factor ~Pmt .RIP.; or, 
all dimensions in the direction of P.,. must be increased by the 
factor P.1P,Rin, . After the flow field is transformed, the net is 
constructed by graphical methods . Then the net is projected back 
to the original dimensions of the field . It will be found that the 
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projected net generally will no longer be a system of squares, and the 
equipotential and stream lines will not intersect at right angles . 
For areally nonhomogeneous aquifers-that is, those comprising 

subareas of homogeneous and isotropic media but of different trans-
missibility-the flow pattern cannot, according to theory, be repre­
sented by a single system of squares . If the flow net were constructed 
so that each flow path conducted the same quantity of water, one 
subarea could be represented by a system of squares, but the nets 
in the other subareas would consist of rectangles in which the ratio 
of the lengths of the sides would be proportional to the differences 
in transmissibility . If the flow lines from one subarea enter another 
subarea at an angle, the flow lines (and equipotential lines) would be 
refracted according to the tangent law. The graphical construction 
of a flow net under such conditions is extremely difficult and, with the 
data that are available for most ground-water problems, is generally 
impossible . However, Bennett and Meyer (1952, p . 54-58) have 
shown that by generalizing the flow net for such an area into a system 
of squares anddetermining the quantity of flow by making an inventory 
of pumpage in each of the subareas, the approximate transmissibility 
of the subareas may be determined . Although such an application of 
the method departs somewhat from theory, it is likely that for many 
areas it provides more realistic, areal transmissibilities than could be 
obtained by use of pumping-test methods alone. Whereas pumping 
tests may provide accurate values of transmissibilities they generally 
represent only a small "sample" of the aquifer. Flow-net analysis 
on the other hand may include large parts of the aquifer, and hence 
provide an integrated and more realistic value of the areal trans­
missibility . Moreover, by including comparatively large parts of 
the aquifer, the local irregularities that may appreciably affect some 
pumping-test analyses generally have an insignificant effect on the 
overall flow patterns . 
The application of flow-net analysis to ground-water problems has 

not received the attention it deserves ; however as the versatility of 
flow-net analysis becomes more widely known, its use will become 
more common . Such a method of analysis greatly strengthens the 
hydrologist's insight into ground-water flow systems ; it provides 
quantitative procedures for analyzing and interpreting contour maps 
of the water-table and piezometric surfaces . 
For other illustrations of flow-net construction, see figures 36 and 

38 . 

THEORY OF IMAGES AND HYDROLOGIC BOUNDARY ANALYSIS 

The development of the equilibrium and nonequilibrium formulas 
discussed in the preceding sections was predicated in part on the as­
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sumption of infinite areal extent of the aquifer, although it is recog­
nized that few if any aquifers completely satisfy this assumption . In 
many instances the existence of boundaries serves to limit the con­
tinuity of the aquifer, in one or more directions, to distances ranging 
from a few hundred feet to as much as tens of miles. Thus when an 
aquifer is recognized as having finite dimensions, direct analysis of 
the test data by the equations previously given is often precluded . 
It is often possible, however, to circumvent the analytical difficulties 
posed by the aquifer boundary . The method of images, widely used 
in the theory of heat conduction in solids, provides a convenient tool 
for the solution of boundary problems in ground-water flow . Imagi­
nary wells or streams, usually referred to as images, can sometimes 
be used at strategic locations to duplicate hydraulically the effects on 
the flow regime caused by the known physical boundary . Use of the 
image thus is equivalent to removing a physical entity and substituting 
a hydraulic entity. The finite flow system is thereby transformed by 
substitution into one involving an aquifer of infinite areal extent, in 
which several real and imaginary wells or streams can be studied by 
means of the formulas already given . Such substitution often results 
in simplifying the problem of analysis to one of adding effects of 
imaginary and real hydraulic systems in an infinite aquifer . 
An aquifer boundary formed by an impermeable barrier, such as a 

tight fault or the impermeable wall of a buried stream valley that cuts 
off or prevents ground-water flow, is sometimes termed a "negative 
boundary." Use of this term is discouraged, however, in favor of the 
more meaningful and descriptive term "impermeable barrier." A line 
at or along which the water levels in the aquifer are controlled by a 
surface body of water such as a stream, or by an adjacent segment of 
aquifer having a comparatively large transmissibility or water-storage 
capacity, is sometimes termed a "positive boundary." Again, how­
ever, use of the term is discouraged in favor of the more precise terms 
line source or line sink, as may be appropriate. 
Although most geologic boundaries do not occur as abrupt discon­

tinuities, it is often possible to treat them as such . When conditions 
permit this practical idealization, it is convenient for the purpose of 
analysis to substitute a hypothetical image system for the boundary 
conditions of the real system . 

In this section, where the analysis of pumping-test data is con­
sidered, several examples are given of image systems required to 
duplicate, hydraulically, the boundaries of certain types of areally 
restricted aquifers . It should be apparent that similar methods can 
be used to analyze flow to streams or drains through areally limited 
aquifers . 



��

146 GROUND-WATER HYDRAULICS 

PFRFNNIA7 . STREAMLINE SOURCE AT CONSTANT HEAD 

An idealized section through a discharging well in an aquifer 
hydraulically controlled by a perennial stream is shown in figure 35A. 
For thin aquifers the effects of vertical-flow components are small at 
relatively short distances from the stream, and if the stream stage is 
not lowered by the flow to the real well there is established the bound­
ary condition that there shall be no drawdown along the stream posi­
tion . Therefore, for most field situations it can be assumed for 
practical purposes that the stream is fully penetrating and equivalent 

A . REAL SYSTEM 
i 

Aquifer thickness m should be very large com­
pared to resultant drowdown near real well 

B . HYDRAULIC COUNTERPART OF REAL SYSTEM 
FIGURE 35 .-Idealized section views of a discharging well in a semi-infinite aquifer bounded by a perennial 

stream, and of the equivalent hydraulic system in an infinite aquifer . 
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to a line source at constant head. An image system that satisfies the 
foregoing boundary condition, as shown in figure 35B, allows a solution 
of the real problem through use, in this example, of the Theis non 
equilibrium formula. Note in figure 35B that an imaginary recharging 
well has been placed at the same distance as the real well from the line 
source but on the opposite side . Both wells are situated on a com­
mon line perpendicular to the line source . The imaginary recharge 
well operates simultaneously with the real well and returns water 
to the aquifer at the same rate that it is withdrawn by the real well . 
It can be seen that this image well produces a buildup of head every­
where along the position of the line source that is equal to and cancels 
the drawdown caused by the real well which satisfies the boundary 
condition of the problem. The resultant drawdown at any point on 
the cone of depression in the real region is the algebraic sum of the 
drawdown caused by the real well and the buildup produced by its 
image. The resultant profile of the cone of depression, shown in 
figure 19B, is flatter on the landward side of the well and steeper on 
the riverward side, as compared with the shape it would have if no 
boundary were present . Figure 36 is a generalized plan view of a 
flow net for the situation given in figure 35A. The distribution of 
stream lines and potential lines about the real discharging well and its 
recharging image, in an infinite aquifer, is shown. If the image 
region is omitted, the figure represents the stream lines and potential 
lines as they might be observed in the vicinity of a discharging well 
obtaining water from a river by induced infiltration . 

IMPERMEABLE BARRIER 

An idealized section through a discharging well in an aquifer 
bounded on one side by an impermeable barrier is shown in figure 
37A. It is assumed that the irregularly sloping boundary can, for 
practical purposes, be replaced by a vertical boundary, occupying
the position shown by the vertical dashed line, without sensibly 
changing the nature of the problem. The hydraulic condition imposed 
by the veritcal boundary is that there can be no ground-water flow 
across it, for the impermeable material cannot contribute water to 
the pumped well . The image system that satisfies this condition 
and permits a solution of the real problem by the Theis equation is 
shown in figure 37B. An imaginary discharging well has been placed 
at the same distance as the real well from the boundary but on the 
opposite side, and both wells are on a common line perpendicular to 
the boundary . At the boundary the drawdown produced by the 
image well is equal to the drawdown caused by the real well . Evi­
dently, therefore, the drawdown cones for the real and the image 
wells will be symmetrical and will produce a ground-water divide at 
every point along the boundary line . Because there can be no flow 



0 

00 

CO 

v. 

O 

Recharging 

image \well d 
a y 
t=i 

x 
d 

a 
r 
c~ 

0 

X 
Q 

Fic-URE 36.-Generalized flow net showing stream lines and potential lines in the vicinity of a discharging well dependent upon induced infiltration 
from a nearby stream . 
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A . REAL SYSTEM 

NOTE : 
Aquifer thickness m should be very large com­

pared to resultant drawdown near real well 

B. HYDRAULIC COUNTERPART OF REAL SYSTEM 

FIGURE 37.-Idealized section views of a discharging well in a semi-infinite aquifer bounded by an imper-
meable formation, and of the equivalent hydraulic system in an infinite aquifer . 

across a divide, the image system satisfies the boundary condition of 
the real problem and analysis is simplified to consideration of two 
discharging wells in an infinite aquifer . The resultant drawdown 
at any point on the cone of depression in the real region is the alge­
braic sum of the drawdowns produced at that point by the real well 
and its image. The resultant profile of the cone of depression, 
shown in figure 37B, is flatter on the side of the well toward the 
boundary and steeper on the opposite side away from the boundary 
than it would be if no boundary were present. Figure 38 is a general­
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FiaUR$ 38 .-Generalized flow netshowing stream lines and potential lines in the vicinity of a discharging well near an impermeable boundary . 
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ized plan view of a flow net for the situation given in figure 37A. 
The distribution of stream lines and potential lines about the real 
discharging well and its discharging image, in an infinite aquifer, is 
shown . If the image region is omitted, the diagram represents the 
flow net as it might be observed in the vicinity of a discharging well 
located near an impermeable boundary . 

TWO IMPERMEABLE BARRIERS INTERSECTING AT RIGHT ANGLES 

The image-well system for a discharging well in an aquifer bounded 
on two sides by impermeable barriers that intersect at right angles is 
shown in figure 39 . Although the drawdown effects of the primary 
image wells, h and I2, combine in the desired manner with the effect 

ImpermeableB barrier 

A A Discharging 
real well 

J r~ rJ ~ 

Impermeable 
barrier 

NOTES-

Image wells, / , are numbered in the sequence 
in which they were considered and located 

Open circles signify discharging wells 

FIGURE 39.-Plan of image-well system for a discharging well in an aquifer bounded by two imper­
meable barriers intersecting at right angles. 
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of the real well at their respective boundaries, each image well pro­
duces an unbalanced drawdown at the extension (reflection) of the 
other boundary . These unbalanced drawdowns at the boundaries 
produce a hydraulic gradient, with consequent flow across the exten­
sion of each boundary, and therefore do not completely satisfy the 
requirement of no flow across the boundaries of the real system . It 
is necessary, therefore, to use a secondary image well, 13, which bal­
ances the residual effects of the two primary image wells at the two 
extensions of the boundaries . The image system is then hydraulically 
in complete accord with the physical boundary conditions . The 
problem thereby has been simplified to consideration of four dis­
charging wells in an infinite aquifer. 
IMPERMEABLE BARRIER AND PERENNIAL STREAM INTERSECTING AT 

RIGHT ANGLES 
The image-well system for a discharging well in an aquifer bounded 

on two sides by an impermeable barrier and a perennial stream which 
intersect at right angles is shown in figure 40. The perennial stream 
of figure 40 might also represent a canal, drain, lake, sea, or any other 
line source of recharge sufficient to maintain a constant head at this 
boundary . As before, the drawdown effects of the primary images,
h and I2, combine in the desired manner with the effects of the real 
well at their respective boundaries . However, discharging image well 
h produces a drawdown at the extension of the line source, which is 
a no-drawdown boundary, and recharging image well 1, causes flow 
across the extension of the impermeable barrier, which is a no-flow 
boundary . By placing a secondary recharging image well, Ia, at the 
appropriate distance from the extension of each boundary, the system 
is balanced so that no flow occurs across the impermeable barrier and 
no drawdown occurs at the perennial stream . Thus again the problem 
has been simplified to consideration of an infinite aquifer in which 
there operate simultaneously two dischargingandtworecharging wells. 
The simplest way to analyze any multiple-boundary problem is to 

consider each boundary separately and determine how best to meet the 
condition of no flow or no drawdown, as the case may be, at that 
boundary. After the positions of the primary image wells have been 
established, the boundary positions should be reexamined to see if 
the net drawdown effects of the primary image wells satisfy all stipu 
lated conditions of no flow or no drawdown . For each primaryimage 
causing an unbalance at a boundary position, or extension thereof, it 
is necessary to place a secondary image well at the same distance from 
the boundary but on the opposite side, both wells occupying a com­
mon line perpendicular to the boundary . When the combined draw-
down (or buildup) effects of all image wells are found to produce the 
desired effect at this boundary the same procedure is executed with 
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Image wells, / , are numbered in the sequence 
in which they were considered and located 

Open circles signify discharging wells 

Filled circles signify recharging wells 

Fiouaz 40 .-Plan of image-well system for a discharging well in an aquifer bounded by an impermeable
barrier intersected at right angles by a perennial stream . 

respect to the second boundary . Thus, the inspection and balancing 
process is repeated around the system until everything is in balance 
and all boundary conditions are satisfied, or until the effects of addi­
tional image wells are negligible compared to the total effect . 
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TWO IMPERMEABLE BARRIERS INTERSECTING AT AN ANGLE OF 45° 

Although it is intended here to consider the particular image-well 
system required for analyzing flow to a well in a 45-degree wedge-
shaped aquifer, it is appropriate first to comment briefly on some 
general aspects of image-well systems in wedge-shaped aquifers . By 
analogy with similar heat-flow situations it is possible to analyze the 
flow to a well in a wedge-shaped aquifer, and equivalent image systems 
can be constructed regardless of the wedge angle involved . However, 
closed image systems that are the simplest to construct and analyze 
occur when the wedge angle, 0, of the aquifer equals (or can be 
approximated as equal to) one of certain aliquot parts of 360 °. 
These particular values of 0 may be specified as follows (after Walton, 
1953, p . 17), keeping in mind that it is required to analyze flow to a 
single pumped well situated anywhere in the aquifer wedge : If the 
aquifer wedge boundaries are of like character, 0 must be an aliquot 
part of 180 °. If the boundaries are not of like character, 0 must be 
an aliquot part of 90* . 

Other simple solutions not covered by the above rule appear possi­
ble when 0 is an odd aliquot part of 360*, the pumped well is on the 
bisector of the wedge angle, and the boundaries are similar and im­
permeable . For any of the foregoing special situations it can be 
shown, with the aid of geometry, that the number of image wells, n, 
required in analyzing the flow toward the single real pumping well is 
given by the relation 

3600 
n- -1. (79)

0 

It can also be shown that the locus of all image-well locations, for 
a given aquifer-wedge problem, is a circle whose center is at the wedge 
apex and whose radius equals the distance from the apex to the real 
discharging well (see figure 45) . 
The image-well system for a discharging well in a wedge-shaped 

aquifer bounded by two impermeable barriers intersecting at an angle 
of 45* is shown in figure 41 . The real discharging well is reflected 
across each of the two boundaries which results in location of the two 
primary image wells h and 12 as shown. Considering boundary 1 
only, the effects of the real well and image well I,, are seen to combine 
so that, as desired, no flow occurs across that boundary . However, 
image well 12 will produce flow across boundary 1 unless image well 
Ia is added at the location shown . The system now satisfies the con­
dition of no flow across boundary 1 . Repeating this examination 
process for boundary 2 only, it is seen that the effects of the real well 
and image well 12 combine, as desired, to produce no flow across 
boundary 2 . However, image wells h and I8 will produce flow 
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across this boundary unless image wells I, and 15 are added as shown . 
The image system now satisfies the condition of no flow across bound­
ary 2 . Reexamining, it is seen that image wells I4 and Is will produce 
flow across boundary 1 unless image wells IB and I, are added as shown. 
A final appraisal of the effects at boundary 2, shows that the entire 
system of image wells, plus the real well, satisfies the requirement of 
no flow across the boundary . Thus the flow field caused by a dis­
charging well in this wedge-shaped aquifer can be simulated by a 
total of eight discharging wells in an infinite aquifer. The seven 
image wells have replaced the two barriers . The drawdown at any 
point between the two barriers can then be computed by adding the 

NOTES : 

Image wells, I, are numbered in the sequence 
in which they were considered and located 

Open circles signify discharging wells 

FiouRz 41-Plan of image-well system for a discharging well in an aquifer bounded by two impermeable 
barriers intersecting at an angle of 45 ° . 
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effects produced at that point by the real well and the seven image 
wells . Each image well begins discharging at the same rate and at 
the same time as the real well. 

IMPERMEABLE BARRIER, PARATMEL TO A STREAM 

Shown in figure 42 is the image-well system for a discharging well 
in an aquifer bounded by an impermeable barrier and cut by a fully 
penetrating perennial stream parallel to the barrier. A recharging 
image well, I,, and a discharging image well, I2, are placed as shown 
to satisfy respectively the conditions that no drawdown can occur 
along the line source, and no flow can occur across the impermeable 
barrier. Although these two primary image wells produce, in con­
junction with the real well, the desired effects at their respective 
boundaries, each image well produces a residual effect at the opposite 
boundary which conflicts with the stipulated boundary conditions. It 
is therefore necessary to add a secondary set of image wells, 13 and 14, 
as shown, to produce effects that will combine properly with the 
residual effects of the primary images. Each image well in the second­
ary set will again produce residual effects at the opposite boundary, 
and similarly with each successively added image pair there will be 
residual effects at the boundaries . It should be evident, however, 
that as more pairs of image wells are added the effects of adding a 
new pair have lesser influence on the cumulative effect at each bound­
ary. In other words it is only necessary to add pairs of image wells 
until the residual effects associated with addition of the next pair can 
be considered to have negligible influence on the cumulative effect at 
each boundary . It is seen in figure 42 that there is a repeating pat­
tern in the locations of the image wells. Therefore, after the posi­
tions of the first images have been determined, it is possible to locate 
by inspection as many more as are needed for the practical solution 
of the problem. Once the required number of image pairs has been 
determined, the aquifer boundaries can be ignored and the problem 
analyzed like any other multiple-well problem in an infinite aquifer. 

If the two parallel boundaries are of like character-that is, if the 
perennial stream in figure 42 were replaced by an impermeable barrier 
or if the impermeable barrier were replaced by a perennial stream-
the positions of the image wells would not be changed. In the first 
case, however, all the images would be discharging wells, and in the 
second case the image system would be an alternating series of re­
charging and discharging wells. 
TWOPARAi.LELIMPERMEABLEBARRIERS INTERSECTED AT RIGHTANGLES 

BY A THIRD IMPERMEABLE BARRIER. 
The image-well system for a discharging well in this type of areally 

restricted aquifer is shown in figure 43 . The positions of the images 
are determined as before by adding imaginary discharging wells so 



Average or effective position of 
impermeable barrier 

Notes 
Image wells,/, ore numbered in SECTION VIEW OF REAL SYSTEM 

the sequence in which they were 
I 

considered and located 
Open circles signify discharging 

wells 
Filled circles signify recharging 

wells 

REDUCED PLAN VIEW OF HYDRAULIC COUNTERPART OF REAL SYSTEM 

FioITRE 42 .-Image-well system for a discharging well !n an aquifer bounded by an impermeable barrier parallel to a perennial stream . 
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Note 
Open circles signify discharging wells 

Fiausa 43 .-Plan of image-well system fora discharging well in an aquifer bounded by two parallel impermeablebarriers intersected at right
angles by a third impermeable barrier. 
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that, in combination with the real discharging well, the condition of 
no ground-water flow across any of the three boundaries is established. 
As shown in the figure, two parallel lines of discharging image wells 
are required, separated by twice the distance between the real well 
and the barrier that intersects the two parallel barriers . Theoretically 
the two lines of image wells extend to infinity in both directions from 
the real well . The practical analysis of a problem of this kind, how­
ever, requires the addition of only enough images so that the effect of 
adding the next image, in any of the directions involved, has a negli­
gible influence on the cumulative effect at each of the boundaries. 
It is seen from figure 43 that there is a repeating pattern in the posi­
tions of the image wells, so that the locations of only the first few 
images are required to determine the locations of as many succeeding 
image wells as are needed . For the case of two parallel impermeable 
barriers intersected at right angles by a perennial stream, the image 
system would be the same as shown by figure 43 except that all images 
on the line reflected across the stream would be recharging wells. 
RECTANGULAR AQIIIFER BOUNDED DYTWO INTERSECTING IMPFRMEABLE 

BARR33MRS Pwg,AT"T "~rsNO PERIMNIAL STREAMS 
The image-well system for a discharging well in such an aquifer is 

shown by figure 44 . The positions of the images are determined in 
the manner previously described . It is seen from figure 44 that there 
is again a repeating pattern that extends to infinity in all directions 
from the real well . Thus only the first few images need be located to 
determine the positions of as many succeeding images as are required 
in the practical solution of the problem . If the four boundaries in 
figure 44 were all impermeable barriers, all images would be discharg­
ing wells; and if the four boundaries were all perennial streams, the 
image system would be alternating series of recharging and discharging 
wells. 
APPLICABILITY OF IMAGE THEORY INVOLVING INFINITE SYSTEMS OF 

IMAGE WFJAA 
Referring to the three problems discussed in the three preceding

sections, it will be observed that in each situation the aquifer involved 
is limited in areal extent by two or more boundaries. Furthermore, 
the arrangement of the boundaries is such that at least two are parallel 
to each other, which means that analysis by the image theory requires 
use of an image-well system extending to infinity. 

It has been stated, in discussing the practical aspects of using an 
infinite image-well system, that the individual effects of image wells 
need be added only out to the point where the effect associated with the 
addition of the next more distant well (or wells, depending on the 
symmetry of the array) can be considered to have negligible influence 
on the cumulative effect . Although this criterion ostensibly provides, 
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a reliable and practical means of terminating what would otherwise 
be an endless analytical process, closer scrutiny appears warranted. 
There is no reason to state categorically that this practical approach 
to a solution should never be tried . Undoubtedly there will occur 
situations wherein sensible results can be obtained . On the other 
hand it seems prudent to observe that if the process of algebraically 
summing the individual effects of an infinite system of image wells 
is terminated anywhere short of infinity, there is no simple way of 
determining what proportion of the infinite summation is represented 
by the partial summation. Although addition of the next image well 
(or wells) might have a negligible influence on the sum of all image-
well effects considered out to that point, there is no simple way of 
deciding whether the same may be said of the total influence repre­
sented by adding the effects of say the next 10 or 20 or 100 more dis­
tant image wells. Thus it would appear wise to keep in mind the 
possible limitations of any solution involving the use of an infinite 
system of image wells. 

COROLLARY EQUATIONS FOR APPLICATION OF IMAGE THEORY 

The nature and location of hydrologic boundaries of water-bearing 
formations in some cases can be determined from the analysis of pump-
ing-test data . Considering the discussion in the preceding sections, 
it should be evident that in an aquifer whose extent is limited by one 
or more boundaries, a plot of drawdown or recovery data will depart 
from the form that would be expected if the aquifer were of infinite 
extent . Thus, in a problem involving a discharging well in a semi-
infinite aquifer bounded by an impermeable barrier, some part of a 
time-drawdown plot may be steepened by the boundary effects. 
Conversely, if the boundary involved in thesame type of problemwere 
a perennial stream, a part of the time-drawdown plot may be flat­
tened because of the boundary effects . 
Imagine a pumping test made in ail aquifer whose extent is limited 

by one or more boundaries . During the early part of the test, the 
drawdown data for observation wells close to the pumped well will 
reflect principally thepumping effects. As the test continues, however, 
there will very likely come a time for each observation well when the 
measured drawddwws reflect the net effect of the pumped well and any 
boundaries that are present. At distant observation wells boundary 
effects may arrive almost simultaneously with the effect of the real 
discharging well . Thus determination of the aquifer coefficients of 
transmissibility and storage should be based on the early drawdown 
data, as observed in a well near the pumped well, before the boundary 
effects complicate the analysis . Superposition and matching of a 
plot of these early data (s versus r2/t) on the Theis type curve permits 
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drawing in the type-curve trace. Extension or extrapolation of this 
trace beyond the early data indicates the trend the drawdowns would 
have taken if the pumping had occurred in an infinite aquifer. The 
departure, 8 t , of the later observed data from this type-curve trace 
represents effects of the boundaries on the drawdown . The subscript i 
refers to the image-well system substituted as the hydraulic equivalent
of the boundaries. Usually it is convenient to note values of 8, at 
a number of points along the data curve and to replot these departures
versus values of r.2/t on the same graph sheet that was used in deter-
mining the coefficient of storage and transmissibility from the early
data . The subscript r refers to the real discharging well . The latter 
part of the replotted departure data may again deviate from the 
type-curve trace if the cone of depression has intercepted a second 
boundary . As before, the departures can be replotted against cor­
responding values of r, 2 lt to form a second departure curve. This 
process should be repeated until the last departure curve shows no 
deviation from the type curve. The observed data array will then 
have been separated into its component parts which can be used to 
compute the distances between the observation wells and the image
wells. 
Inasmuch as the aquifer is assumed to be homogeneous (that is, the 

coefficients of transmissibility and storage are constant throughout
the aquifer) it follows from equation 8 that 

u,1 .87Sa u, es-, (80)T r;/t r;/t 

where the subscripts r and i have the significance previously given. 
If on the plots of early drawdown data and first-departure curve a pair
of points is selected so that the drawdown component caused by the 
real well, 8� and the drawdown component caused by the image well, 
8j, are equal, it follows that u,=u{ . On the plots of observed early
drawdowns and first departures just described, 8, and s, obviously 
occur at different elapsed times, which can be labelled t, and t, 
respectively . Equation 80 can therefore be rewritten as follows : 

r2 r? 
ti.t* ) (81) 

or 

(82) 

Equation 81, known as the "law of times" in the physics of heat 
conduction, shows that at a given observation well location the times 
of occurrence of equal drawdown components vary directly and only 
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as the squares of the distances from the observation well to the 
pumped well and to its image. 

Referring to the data plots mentioned earlier in this section, note, for 
the pair of points selected, that values of s, and r,2/t, will be read from 
the early drawdown data while values of ss and r.2/t, will be read from 
the first departure curve. Equation 82 can be made more useful, 
therefore, if it is rewritten in the form 

r'It,r,=r, 2/t, (83) 

Equation 83 now affords a ready means of computing the distance 
from an observation well to an image well . Similar analysis may be 
made of each departure curve constructed from the original drawdown 
data . 

Stallman (1952) has described a convenient method for computing 
ri when the observed drawdown in the aquifer represents the algebraic 
sum of the drawdown effects from one real well and one image well . 
If equation 6 is used to provide expressions for s, and s,, and W(u) is 
substituted as a symbolic form of the exponential integral, it is seen 
that the drawdown at the observation well is 

s=s,fs,= 114
T
.6 [W(u),±W(u)s] " 

From equation 80, 

or 
ut 

rs=r, u,
. (85) 

From equations 84 and 85, it can be seen that r i and the sum of the 
W(u) terms in equation 84 can be expressed in terms of r, and the 
ratio u{/u,. Thus for any given values of u,,/u,=g, a type curve 
can be constructed by plotting assumed values of u, against cor­
responding computed values of the bracketed portion of equation 
84 [which may be written in abbreviated form as Z W(u)] . The ., 
data plot, s versus t, will match this constructed type of curve if the 
observation well is located so that the ratio r jlr, equals the given 
value of K. However, if a family of type curves is drawn for a num-
ber of given values of K, the observed data plot, s versus t, for any 
observation well, can be compared with the set of type curves . Once 
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the best matching curve is found, any convenient matchpoint is 
selected and the coordinate values, s, t, u,, Z W(u), and Kare noted. 
These values, substituted in equations 80, 84, and 85 provide the 
means for computing T, S, and r i . 

Stallman's set of curves is the familiar type-curve u versus W(u), 
used in conjunction with the Theis formula, with a series of appendage 
curves (two for each value of K) asymptotic to it . The trend of the 
appendage curve for a recharging image well is below, and for a dis 
charging image above, the Theis curve. Appendage curves could have 
been constructed by assuming values of ui instead of u, . In this 
event, however, the matching process would not be as direct inasmuch 
as the parent type curve, instead of occupying a single position, 
would shift along the u axis with each pair of appendage (K) curves . 
The appendage curves, computed by Stallman, are for ideal image

wells-those which are pumped or recharged at the same rate as the 
real well . The hydrogeologic structure which gives rise to the 
hypothetical image is not always ideal ; therefore the hypothetical 
images are not always ideal . For this case the method of plotting 
departures may yield an erroneous and misleading analysis . On the 
other hand, the deviations from ideality can be seen immediately 
if the observed data plot s versus t is matched to Stallman's set of 
type curves . Furthermore, for nonideal images, the most accurate 
selection of K is made by utilizing the portion of the appendage 
curve that is nearest the parent or Theis type curve. 

If little is known of the possible location of a local hydraulic bound­
ary a minimum of three observation wells is required to fix the position 
of an image well, which in turn permits location of the boundary . 
After the distances from the individual observation wells to the image 
well have been computed, arcs are scribed with their centers at the 
observation wells and their radii equal to the respective computed
distances to the image well . The intersection of the arcs at a common 
point fixes the location of the image well, and the strike of the bound­
ary is represented by the perpendicular bisector of a line connecting 
the pumped well and the image well . 
Another graphical method for locating a hydraulic boundary in 

the vicinity of a discharging well was devised by E . A. Moulder 
(1951, written communication, p. 61) . The geometry is shown in 
figure 45 . A circle is scribed whose center is at a nearby observation 
well, O, and whose radius, r {, is equal to the computed distance from 
the observation well to the image well . The image well lies somewhere 
on this circle, say, at point I. Lines are drawn from the selected 
point I to the observation well and to the real discharging well, P. 
If point I is the image-well location and if A is the midpoint of the 
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line IP, then point A lies on the boundary . It can be proved by 
geometry, that the locus of all points A determined in this manner is a 
circle, of radius BA or rj/2, with its center, B, located midway between 
the discharing well and the observation well . Moulder's method 
is particularly useful in aquifer-test situations where data from 
only one or two observation wells are available for locating a boundary 
position . If the approximate position of a suspected boundary is 
known before a pumping test begins, it is desirable to locate most 
of the observation wells along a line parallel with the boundary and 
passing through the pumped well . If feasible the range of distances 
from the observation wells to the pumped well should be distributed 
logarithmically to assure well-defined are intersections in the graphics 
of locating a point on that boundary . At least one observation well 

-%e 
c~ 

Locus of all possible locations 
of a point on the hydrologic 
boundary 

Fiovx$ 45 .-Geometry for locating a point on a hydrologic boundary, with reference to the locations of a 
discharging well and a nearby observation well . 
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should be located close enough to the pumped well so that the early 
drawdown data, unaffected by the boundary, can be used in comput­
ing the aquifer coefficients of storage and transmissibility. 

APPLICABILITY OF ANALYTICAL EQUATIONS 
The assumptions used in developing the equations presented in this 

report include the stipulation that the aquifer is homogeneous and 
isotropic. Even though most naturally deposited sediments do not 
satisfy this condition, the equations may still be applied and the 
results qualified according to the extent of nonhomogeneity . It 
should be realized that homogeneity is a relative term with respect to 
time and space. As an illustration, consider an aquifer composed of 
two types of material-a fine sand and a very coarse sand. Assume 
that these materials occur individually in deposits having the shape 
of cubes one-eighth of a mile on a side, andthat alternate rows of cubes 
(squares in plan view) are offset a distance equal to one-half the length 
of one side of the cube (that is, one-sixteenth of a mile). Let the fine 
and coarse sand occur in alternate cubes along the continuous rows, 
and assume that water occurs, in the aquifer thus created, underwater-
table conditions . Strictly speaking, this aquifer, of infinite extent, 
would now be described as nonhomogeneous . However, the areal 
extent of the portion of the aquifer sampled in a test would be signifi-
cant in judging this element of the aquifer's description. Forexample, 
if a discharging well test is conducted in the center of one of the squares 
and if the test is terminated before the area of influence reaches the 
perimeter of the square, the test results probably would be considered 
excellent and the aquifer described as homogeneous . The results 
would in no way differ from the results to be expected if a similar test 
were made on an infinite "homogeneous" aquifer, composed of material 
identical to that occurring in the limited area here tested . 

As another example, again consider an aquifer test using a discharg­
ing well in the center of one of the squares of the hypothetical aquifer. 
The nearest of several observation wells is at a radius of 5 miles from 
the pumped well, and the test is run until the area of influence is 
described by a circle 10 miles in radius . Coefficients of transmissibility 
computed from data collected at all the observation wells should be in 
close agreement (although not equal to the values obtained from the 
previously described test), and again the hypothetical aquifer, even 
on the larger scale represented in this sample, would be adjudged 
homogeneous. This judgment relies upon the reasoning that, for the 
distances involved, the slightly meandering path of water, as it moves 
toward the well, may be described statistically as conforming to the 
concept of radial flow. For any case in which nonhomogeneity is so 
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distributed that the flow field statistically fits the geometry of the 
mathematical model, the mathematical solution will provide a sound 
analysis . Conversely, when the flow field or a portion thereof is 
significantly distorted in the area of observation, the assumption of 
homogeneity is incorrect . Thus, for the hypothetical aquifer con­
sidered in the two preceding examples, the distorted condition is seen 
to exist if the area of influence of the discharging well were to extend to 
a radius of about '4 to 1 mile-that is, a little beyond the limits of one 
cube of the aquifer material . 
Often the field situation is encountered where a zone of relatively 

impermeable material such as a clay lens, of limited thickness and 
extent, occurs in an aquifer. It should be evident from the foregoing 
examples and discussion, however, that the presence of this clay lens 
in the flow field will have less influence on aquifer test results when 
the effects of the test encompass an area of large radius than when 
the area affected is of small radius . 
An important criterion, therefore, regarding the applicability of the 

equations discussed in this report, is the amount the flow field is dis-
torted, as compared with the flow field that would have been observed 
in an ideal aquifer. 

It should be understood that the numerical results obtained by 
substituting aquifer-test data in an appropriate mathematical model 
indicate the transmissibility and storage coefficients for an ideal aquifer. 
The hydrologist must judge how closely the real aquifer resembles 
this particular ideal . It is usually recognized, for example, that in 
short pumping tests under water-table conditions the water does not 
drain from the smaller openings in the unwatered portion of the aquifer 
in a manner even approximating the instantaneous release assumed 
in devising the mathematical model. Similarly, in testing artesian 
aquifers it is recognized that the aquifer skeleton does not adjust 
instantaneously to the change in head, that considerable water is often 
contributed by intercalated clay beds, and furthermore that water 
leaks through the confining beds, which in the mathematical model 
have been assumed to be impermeable. However, these recognized 
departures from the ideal do not constitute grounds for abandoning, 
or rarely using, available analytical equations . Such departures sim­
ply add emphasis to the admonition that mere substitution of aquifer-
test data in an equation will not of itself assure anyone of establishing 
the correct hydraulic properties for that aquifer. The mechanics of 
applying any of the analytical equations in this report must be accom­
plished with sound professional judgment, followed by critical evalua­
tion and testing of the results . 
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