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GROUND-WATER HYDRAULICS 

The analysis of steady-state test data for a leaky aquifer can thus 
be summarized in the following three simple procedures : 
1 . Select for plotting only the drawdown data which are within 
the region where drawdowns have levelled off. 

2 . Use equations 36, 37, and 42 with a logarithmic plot of s versus r, 
matched to the leaky-aquifer type curve (fig . 27), only if the ob­
served data and resulting computations produce values of x greater 
than 0.03. 

3 . Use equations 2, 4, and 43a with a-semilogarithmic plot of s versus 
log r if the data and resulting computations produce values of x 
less than 0.03. 
The earliest observations of drawdown in each observation well, 

when s is small, should conform to the Theis nonequilibrium type 
curve for the infinite (nonleaky) aquifer if the rate of leakage from the 
confining bed is comparatively small. The coefficient of storage for 
the artesian aquifer can be determined under these conditions from 
the earliest observations of drawdown (Jacob, 1946, p . 204) . The 
computed coefficient of transmissibility should be checked by com­
paring the value obtained from matching the earliest data to the 
nonequilibrium type curve with the value obtained by matching the 
later data to the steady-state leaky-aquifer type curve . If consistency 
of the T values is not obtained, then the leakage may be causing too 
much deviation at the smaller values of t to permit application of the 
Theis nonequilibrium formula. 

VARIABLE DISCHARGE WITHOUT VERTICAL LF.ASAGE 
By R . W. STALLMAN 

CONTIRIIOIISLY VARYING DISCHARGE 

The rate at which water is pumped from a well or well field com­
monly varies with time in response to seasonal changes in demand. 
For instance, the pumping rate, as shown by records of daily or 
monthly discharge, is often found to be varying continuously. Where 
this element of variability is recognized in ground-water problems, the 
analytical methods that are described in the preceding sections of this 
report are not applicable without some modification or approximation . 
Exact equations could perhaps be developed for the case of continu­
ously varying discharge, but the cost of analysis, in terms of time and 
effort, would likely be prohibitive considering that a separate and 
specific solution would be required for each problem . It is considered 
more expedient, therefore, to utilize the existing analytical methods, 
rendering them applicable to the field situation by introducing toler­
able approximations of the field conditions. As an example, con­
sider a situation where the pumping rate in a well (which may also 
represent a well field) tapping an artesian aquifer varies continuously 
with time in the manner indicated by the smooth curve shown in 



�

THEORY OF AQUIFER TESTS 

A 

Time ­

0 3 0o I

1 
_ 

Q20o 

d 
0 

d I 
o~ QO I 

I I 
L
0 I 1 
U 1
N I 1 

tl r2 

tG 

Time 

c 
0 

0 

d 
ar 

d 

v 

0 
3 

I 1 

I 
I 

I I 
f I 
I 
I I 

t3 i 

f 

-

Time -s 

F>iovxa 28 .-Nomenclature for continuously varying discharge. 

figure 28A . This smooth curve may be approximated by the series 
of steps shown, and the analysis of each step may be undertaken 
starting with conventional theory and equations . Thus the Theis 
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120 GROUND-WATER HYDRAULICS 

nonequilibrium formula (eq. 6) can be used to construct a type curve 
for analyzing the observed drawdowns caused by the stepped pumping 
rates indicated in figure 28A and B. The drawdown, s, at distance r 
from the pumped well, at any time t, is 

S =Si+s2+S3 . . . . . . .+S. (44) 

where the subscripts refer to the OQ values of figure 28B. The zero 
reference time to is chosen arbitrarily so that the effects of the ante­
cedent rate of pumping, Qo, are established as a regular trend that 
can be projected or extrapolated with certainty, as shown in figure 
28C, over the time span occupied by the stepped pumping rates. 
Applying the Theis nonequilibrium formula to define each of the 
'drawdown components given in equation 44, there follows, 

s`1 T.6 
(AQ1W(u)1+AQ2W(u)2+AQ3W(u)3 . . . . . +AQnW(U),J- (45) 

The corresponding u values are 

1 . 87r2S . _ 1 . 87r2S . _1 . 87r2S .�1_
2-1 

T(t-t1)' 
u2 

T(t - t2) ' u'T(t-t3)' 
. . . ; 87r2S

'1,6n-T(t-t,,) . (46) 

Therefore, 
Ft- t ' , t ­ t1 . t- t1 

u2-u1 It-t31~, u3=u1 t-t. 

Inspection of equations 46 and 47 should indicate that virtually an 
infinite number of type curves can be constructed for solving equation 
45 . For practical purposes, however, only a family of curves need 
be constructed. 

It can be seen from equations 46 that the relation between the u 
values is dependent on the value of t selected . For any given value 
of t, the values of u are proportional to the constant 1 .87r2S/T. 
Therefore the family of curves must be constructed using t and 

n 
1 .87 r2SI Tas independent variables and Z OQW(u) as the dependent 

variable . This is accomplished by first assuming several values of 
1 .87 r2SITfor a particular value oft. Values of u1 are then computed 
for that t for the assumed values of 1.87r2SIT using the first of equa-
tions 46 . Equations 47 are then used to compute values of ul, 
u3 . . . u,t for each assumed value of 1 .87r 2SIT. These in turn 
determine (see table 2) the corresponding W(u) values, which are 
used to compute the quantity in brackets (the sum of all the OQW(u) 
terms) in equation 45 . Thus a set of values is produced for the sum 
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of the AQW(u) terms, corresponding with the assumed values of 1 .87 
r2SIT and all are related to one assumed value of t. This computing 
procedure is repeated for each value of t in a whole set of t values 
selected to span a time range that will permit drawing the family of 
type curves, shown schematically in figure 29, through the same time 

a 
4 

o,
0 

log t 
FIOIIBE 29.-Schematic plot of family of type curves for problems involving continuously varying discharge . 

interval covered by the drawdown observations in the aquifer. The 
field-data plot of log s versus log 1/t is superposed on the family of 
type curves, taking care that the logarithmic time scales of the two 
graphs are exactly matched . The data plot is then shifted along the 
n 

OQW(u) axis until the position is found where the curvature of the 

data plot is identical with an underlying type curve or with an inter­
polated type curve position . It follows that this serves to identify
the data curve with a specific value of 1 .87r2S/T. Values of s and 
n 

r, OQW(u) are read from a point common to both graphs and entered 

in equation 45 to solve for T. The computed value of T can then be 
used with the value of 1 .87r 2SIT to solve for S. Should several 
observation wells at different radii be available, it may be more con­
venient to construct a type curve suitable for matching with the 
observed drawdown profile. For a selected observation time, values 
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n 
Of 7, OQW(u) and 1.87r2S/Tare taken from figure 29 and used to con­

n 
struct a new type curve by plotting log AQW(u) against log (1 .87 

r2S/r . This new logarithmic type curve, drawn for a selected time, 
t, can be matched with a logarithmic data plot of s versus r2, drawn 
for the same time t. 

INTERMITTENT OR CYCLIC DISCHARGE 

Analysis of drawdown data by means of the methods described in 
the preceding section is likely to require a large amount of calculation . 
However, for certain specific kinds of discharge variations the analysis 
can be simplified considerably. The detailed solutions of two specific 
cases have been described by Theis and Brown (1954) . One of the 
problems solved was that of computing the drawdown occurring in a 
well being operated in a regular cycle of pumping at a constant rate 
for a given time interval, then resting for a given time interval . 
Their final equation, in the usual Survey units, for drawdown in the 
pumped well after n cycles of operation is 

264Q 1 .2 .3 . . . . . . . . n 
sn= 

T togoo 
(1-p)(2-p)(3-p) . . . . (n-p) (8) 

where p is the fractional part of the cycle during which the well is 
pumped . In part, the simple form of equation 48 was obtained by 
utilizing the semilog approximation (eq. 4) of the Theis nonequilib 
rium formula. Many regular operational cycles are easily generalized 
and analysis may lead to a final expression comparable, in simplicity, 
to equation 48 . 

CHANNEL METHODS-LINE SINK OR LINE SOURCE 
CONSTANT DISCHARGE 

NONSTEADY STATE, NO RECHARGE 

As early as 1938 Theis (Wenzel and Sand, 1942, p . 45) had developed 
a formula for determining the decline in artesian head at any distance 
from a drain discharging water at a uniform rate . In 1949 Ferris 
(1950) derived a formula that can be shown to be identical with the 
one derived by Theis. The development is based on the following 
assumptions : (a) the aquifer is homogeneous, isotropic, and of semi-
infinite (bounded on one side only by the stream) areal extent ; (b) 
the discharging drain completely penetrates the aquifer; (c) the aqui-
fer is bounded by impermeable strata above and below ; (d) the flow 
is laminar and unidimensional ; (e) the release of water from storage 
is instantaneous and in proportion to the decline in head ; and (f) the 
drain discharges water at a constant rate . 
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Slightly modifying the form used by Ferris, the drain formula can 
be written nondimensionally, as 

-U2 z 
eQax -1

+ 2 
fo

2VMS e-uadus- (49)
2T 11 

where 

u=x 
V4Tt' 

or 
2- x2S 
u (50)

4Tt~ 

Ferris suggested that the quantity in brackets be written symbolically, 
for convenience, as D(u) which is to be read "drain function of u," and 
in this report the subscript q will identify it with the constant dis­
charge situation. Equations 49 and 50 can therefore be rewritten 
in abbreviated form, in the usual Survey units, as 

s_720Q6 
D(u~, (51) 

and 
1 .87x2S

u2- (52)
Tt ' 

where 
s=drawdown, in feet, at any point in the vicinity of the drain dis­

charging at a constant rate, 

Qn =constant discharge (that is, base flow) of the drain, in gallons per 
minute per lineal foot of drain, 

x=distance, in feet, from the drain to the point of observation, 
t=time, in days, since the drain began discharging, 

and S and Thave the meaning and units already defined. 
From inspection of equations 51 and 52 it follows that if s can 

be measured at several values of t, and if x and Qt, are known, then S 
and T can be determined. However, the occurrence of two unknowns 
and the nature of the drain function make an exact analytical solution 
impossible and trial solution most laborious. A graphical solution 
of superposition, similar to the one devised by Theis for solution of 

.his nonequilibrium formula, affords a simple solution of equation 51 
The first step in constructing the type curve is to assume values of 

u and compute the corresponding values for D(u), from equation 49, 
which can be done easily with the aid of published tables (U.S . Natl . 
Bur. of Standards, 1954). Values of D(u), and u2 for values of u 
from 0 .0510 to 1 .0000 are given in table 5. These data are then used 
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to prepare a type curve on logarithmic coordinate paper by plotting 
values of u or u2 against values of D(u) Q . Such a. type curve is shown 
in figure 30 and, for convenience in subsequent computation, values 
of D(u), have been plotted against values of u2 . 
Rearranging equations 51 and 52 and taking the log of both sides, 

there follows : 

log 8= [log 720~°x]+logD(u) Q , (53) 

and 
(54)logt2=Clog 1 .87 S]-}-log u2. 

For a given test, the bracketed parts of equations 53 and 54 are con­
stant and log D(u), is related to log u2 in the manner that log s is re­
lated to log (x 2 /t) . Therefore, if values of the drawdown, s, are 
plotted versus x2lt on logarithmic tracing paper having the same log 
scale as the type curve for the drain formula, the curve of observed 
data will be similar to the type curve. The data curve may thus be 
superposed on the type curve, with the coordinate axes held parallel, 
and translated to the position where the observed data coincide or 
make the best fit with the type curve. When this matching position 
has been found, an arbitrary point is selected, common to both curves, 
and the coordinates of this common point are used to solve equations 
53 and 54 for Tand S. 

TABLE 5.-Values of D(u)a, u, and u2 for channel method-constant discharge
formula .-

(Data for plotting type curve (fig . 30) for equation 51 . After Ferris (1950)1 

u 
0.0510 

u2 
0.0026 

D(u), 
10.091 

u 
.2646 

u9 
.070 

D(u), 
1.280 

.0600 .0036 8.437 .3000 .090 1.047 

.0700 .0049 7.099 3317 .110 .8847 

.0800 .0064 6.097 :3605 .130 .7641 

. 0900 .0081 5.319 .4000 .160 .6303 

.1000

.1140 

.1265 
.010
.013 
.016 

4.693 
4.013 
3.531 

.4359 

.4796 

.5291 

.190 

.230 

.280 

. 5327 

.4310 

.3516 
.1414 .020 3.069 .5745 .330 .2895 
.1581 .025 2.657 .6164 .380 .2426 

.1732 

.1871 

.2000

.2236 

.2449 

.030 

.035 

.040 

.050

.060 

2.355 
2.120
1.933
1.648
1.440 

.6633 

.7071 

.7616

.8124 
.8718 

.440 

.500 

.530 

. 660 

.760 

.1996

.1666 
1333 

:1084 
.08503 

. 9487 .900 .06207 
1.0000 1.000 .05026 

Despite the restrictive assumptions upon which it is based, the 
drain formula, as it has been called, has been applied successfully in 
determining the coefficients of transmissibility and storage of an 
aquifer and in estimating the pickup by or leakage from drains . 
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Discussion and comparison of various ways of plotting the type 
curves for the drain function D(u), and the well function W(u) (see
figures 30 and 23) are given by Warren (1952, written communication) . 

CONSTANT HEAD 

NONSTEADY STATE, NO RECHARGE 

By R. W. STALLMAN 

The decline in artesian head at any distance from a stream or drain, 
whose course may be approximated by an infinite straight line, sub­
sequent to a sudden change in stream stage, can be found by borrowing
the solution to an analogous heat-flow problem (Ingersoll, Zobel, and 
Ingersoll, 1948, p. 88) . It is assumed that (a) the stream occurs 
along an infinite straight line and fully penetrates the artesian aquifer ; 
(b) the aquifer is semi-infinite in extent (bounded on one side only by
the stream) ; (c) the head in the stream is abruptly changed from zero 
to so at time t=0 ; (d) the direction of ground-water flow is perpen­
dicular to the direction of the stream ; and (e) the change in the rate 
of discharge from the aquifer is derived from changes in storage by
drainage after t=0. Substituting ground-water nomenclature in the 
heat-flow equation, the distribution of drawdown in the artesian 
aquifer is found to be 

2so x 

so-8 2 Tcls e-'~'du,
=~J0 

or 
~f 

s.so [I--
2 Tt/S e-u'du -soD(u)n, (55)

'~ o 

where D(u),, replaces the quantity in brackets and represents the drain 
function of u for the constant head situation, and where 

u2_X
2S 

(56)4Tt~ 

In the foregoing expressions x is the distance from the stream or drain 
to the point at which the decline in artesian head, s, is observed or 
known, and so is the abrupt change in stream stage at t=0 . Other 
symbols are as previously defined. (Note : In equation 55 the integral
expression and its coefficient constitute what mathematicians have 
labelled the error function, written as "erf." The bracketed portion
of equation 55 is identified as the complementary error function, written 
as "cerf" .) 
The relation expressing the discharge from the aquifer, per unit 

length of stream channel, Qb, resulting from the change in stream stage, 
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can also be found in texts on heat flow (Ingersoll, Zobel, and Ingersoll, 
1948, p. 90) . When written using ground-water notation, and multi­
plying by 2 to account for the water contributed from both sides of 
the stream the equation has the form 

(57) 

Equations 56 and 57 now afford a means for evaluating the two un-
knowns Tand S, inasmuch as the ratioS: Tis determined from equation 
56 and the product ST is obtained from equation 57 . 
Comparing equations 55 and 56 the use of the method of superposed 

graphs, described in previous sections, is again indicated as the most 
logical means of solution because log s evidently varies with log xllt in 
the same manner that log D(u),, varies with log u2. Thus the solution 
of equation 56 for the ratio S : Twill evidently require matching a log­
arithmic data plot of values of's versus corresponding values of x2lt 
(or simply ilt if only one observation well is available) to a logarithmic 
type curve prepared by plotting values of D(u),, versus corresponding 
values of u2. Such a type curve is shown in figure 31, prepared from 
the drain function values given in table 6 . 

If equations 56 and 57 are rewritten using the usual Survey units 
(except for Qb which is the base flow in gallons per minute per foot of 
stream length), they become 

_1 .87x 2S 
u2_ ' (58)

Tt 
and 

Qb=2 .15X10-3s0 T(59)t
TABLE 6.-Values of D (u) b, u, and ua for channel method-constant head formula 
[Data for plotting type curve (fig . 31) for equation 55. Prepared by R . W . Stallman . Values of 
D(u)g,, for selected values of ul or u, were computed with the aid of U .S. Natl . Bureau of Standards tables 
(1954)] . 

u u3 D(u)a u u2 D(u)A 
0.03162 0.0010 0.9643 0 .6325 0.40 0 .3711 
.04000 .0016 .9549 .7746 .60 .2733 
.05000 .0025 .9436 .8944 .80 .2059 
.06325 .0040 . 9287 1 .000 1 .00 .1573 
.07746 .0060 .9128 1.140 1 .30 .1069 

.08944 .0080 .8994 1.265 1 .60 .0736 

.1000 .010 .8875 1 .378 1 .90 .0513 

.1265 .016 .8580 1 .483 2.20 .0359 

.1581 .025 .8231 1 .581 2.50 .0254 

.2000 .040 .7730 1 .643 2.70 .0202 

.2449 .060 .7291 1.732 3 .00 .0143 

.2828 .080 .6892 1.789 3 .20 .0114 

.3162 .10 .6548 

.4000 .16 .5716 

.5000 .25 .4795 
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FioURE 31 .--Logaritbmic graph of the drain function D(u)g, for channel method-constant head . 
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Equations 55 and 57 define the changes in head and flow which occur 
in the aquifer if the stream stage is abruptly changed. Therefore 
the stipulation of no recharge implies only that the rate of recharge 
must be constant for a sufficient interval of time, so that the regional 
water-level trends can be extrapolated with accuracy throughout the 
period in which the changes in the aquifer are being observed . 

Water-level data from wells near the stream may, in some field 
situations, yield erratic results, depending on the flow pattern in the 
aquifer in the vicinity of the stream. For example, if the stream 
only partly penetrates the aquifer the flow lines in the aquifer will 
obviously bend upward as they approach the stream, thereby produc­
ing vertical components of flow . Thus the smaller the distance x, 
between observation well and stream, the greater the errors inherent 
in the observed water levels . This in turn means that as x decreases, 
the error in the computed value of SIT increases . It should also be 
realized that instantaneous or abrupt lowering of stream stage is 
seldom possible, which means that the determination of a reference 
or zero time is difficult. Thus observations made a short time after 
the stream stage is lowered may be somewhat unreliable . In general, 
therefore, it would seem prudent to favor the data collected at com­
paratively large values of x and large values of t to provide the most 
reliable basis for analysis . 
Where it is known that the stream or drain penetrates only a part 

of the aquifer thickness, the following adjustment procedure, though 
not yet proven by field trial, may offer a means for determining more 
realistic values for T and S. It should be evident that in a field 
situation of this kind, the change in head in the stream channel is 
not as effective in producing head changes throughout the aquifer 
as when the stream is fully penetrating. Near the stream, ground­
water levels adjust quickly to changes in stream stage, but part of 
the adjustment is caused by the bending of the flow lines. It can 
be assumed, however, that at some relatively short distance xo away 
from the stream the bending of the flow lines in the aquifer will be 
small enough so that the effects on the head values may be neglected . 
Thus, for distances greater than xo the flow lines may be considered 
parallel-that is, flow is essentially one-dimensional . The change 
in head in the aquifer, at the distance xo, may therefore be considered 
as an effective value of so and it is related to the changes in head 
throughout the aquifer, for all distances greater than xo, in the manner 
described by equations 55 and 56 . 

In effect this reasoning means that the real partly penetrating 
stream, in which the stage was abruptly changed an amount so, is 
being replaced (at the distance xo) by a theoretical fully penetrating 
stream in which the stage change may be regarded as essentially 
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SECTION VIEW OF IDEAL AQUIFER SUBJECT TO UNIFORM ACCRETION, 
BOUNDED BY PARALLEL STREAMS 

Water table 

0 a x 2'a 
�, FIoW 

---=--=Confining ~-_-=.material -----_-____-_

(At1er Jacob, 1943) 

B. NOMENCLATURE FOR MATHEMATICAL ANALYSIS OF PROFILE SHOWN IN SKETCH 

FIGTIRE 32.-Section views for analyzing steady-state flow in hypothetical aquifer of large thickness with 
uniform accretion from precipitation . 

abrupt but of a lesser magnitude which shall be termed an effective 
value of so. 

This socalled effective value of so can be computed from equation 
55 after superposing the data and type curves in the manner 
already described . The critical distance x0 can also be computed, 
using the coordinates for a point common to the matched data and 
type curves, if more than one observation well is available . For 
each observation well the ratio SIT is computed, using the distance 
from the well to the real stream channel as a first estimate in equa­
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tion 56 . If the SITvalues thus determined are not alike, the equation 
for u2 is adjusted to read as follows : 

u2- 1 .87(x-x°)2S. 
Tt 

An estimate of x° is then made, and SIT values for each observation 
well are recomputed using the effective distance to the stream (x=x°) . 
If the data and field conditions are sufficiently ideal to permit an 
accurate analysis, several assumed values of x° will indicate the one 
that will produce the closest agreement in the computed values of 
SIT. 

It is pointed out that it is difficult to assess the true value of these 
adjustment procedures, inasmuch as the opportunity for applying 
them to a specific field problem has not yet been afforded . 

STEADY STATE, UNIFORM RECHARGE 

A problem of considerable practical interest is that of estimating 
the base flow of streams, or the effective average rate of ground-water 
recharge, from the shape of the water table. Consider the case of an 
aquifer bounded on two sides by fully penetrating parallel streams of 
infinite length as shown in figure 32A . It is assumed that the aquifer 
is homogeneous and isotropic, and that the aquifer is recharged at a 
rate of accretion, W, that is constant with respect to time and space. 
Flow is therefore one-dimensional and a ground-water divide is cre­
ated at distance a, midway between the streams (see figure 32B) . 
Jacob (1943, p. 566) has given the equation of steady-state profile as 

(2 
°-(2T) ax a2 J~ 

or 
T ax x2 

(60)
Wh°-2h' 

where 
W=constant rate of recharge to the water table ; 
a=distance from the stream to the ground-water divide ; 
x=distance from the stream to an observation well ; 
h° =elevation of the water table, at the observation well, with 

respect to the mean stream level . 
It is frequently convenient to express the rate of recharge, W, in 

inches per year, while a, x, and h° are expressed in feet, and T is in 
the usual Survey units. Equation 60 is then rewritten in the form 

2 
T=1.71(10 -3) W(ax (61)

-2ho 
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In the absence of artificial withdrawal of water from an aquifer, 
the net recharge must equal the natural discharge, provided changes 
in storage are insignificant. Although it is recognized that under 
natural conditions there are variations of W in time, it should be 
apparent that if average or mean ground-water levels are used in 
equation 61, a figure for Wequivalent to an effective average accretion 
rate will result . 

Equation 61 can be solved if the average (in time) contribution, 
Qt, to the base flow of the stream, per unit length of channel can be 
determined from stream-flow measurements . If Qb is expressed in 
gallons per minute per foot of stream channel, then 

W=8.44(105) Qb~ 
2a' 

or 

W=4.22(10 5)b(62) 

Equation 62 permits determination of Wwhich can be used in equation
61 in computing the value of T. 

In many field situations, of the type postulated here, general 
appraisal of the occurrence of ground water may indicate that the 
ground-water divide is parallel to the stream course, although the 
distance a will be unknown. If two observation wells are available, 
it is possible to compute a value for a and a value for the ratio 586T1W. 
If a larger number of observation wells is available, a graphical so 
lution may be used to solve for the values of a and 586T/W. The 
procedure requires observation of the distances, x, from the stream to 
the individual observation wells and the corresponding values of ho. 
Using the data from one observation well, and arbitrarily selecting 
several values of a, the corresponding values of 586T/W are computed 
after appropriate substitution in equation 61 . The computed values 
of 586T/W are plotted against the corresponding assumed values of 
a and a smooth curve is drawn through the plotted points. In similar 
fashion a curve is drawn on the same graph for each observation well . 
The coordinates of the single point at which all the curves intersect 
give the particular values of a and of 586T/W which will satisfy all 
the available data . 

SINUSOIDAL HEAD FLUCTUATIONS 

Werner and Noren (1951) and later Ferris (1951) independently 
analyzed the problem of fluctuations of water levels in wells in response 
to sinusoidal changes in stage of nearby surface-water bodies. The 
solution to this general type of problem has long been available in 
other fields of science and as Ferris indicates it may conveniently be 
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found in reference works on heat flow such as the text by Ingersoll,
Zobel, and Ingersoll (1948, p . 46-47) . Translated into ground-water 
terms, the solution requires an isotropic semi-infinite artesian aquifer
of uniform thickness in full contact, along its one boundary, with a 
surface-water body that may be considered an infinite line source . 
Within the aquifer the change in water storage is assumed to occur 
instantaneously with, and at a rate proportional to, the change in 
pressure . Ferris (1951, p . 3) shows that the equation for the range
of ground-water fluctuation in an observation well, a distance x from 
the aquifer contact with the surface-water body, whose stage is chang­
ing sinusoidally, has the nondimensional form 

(63) 

or, in the usual Survey units, 

s,=2so e - l . az~lsltoT~ (64) 
where 

s,=range 6f ground-water stage, in feet ; 
so=amplitude or half range of the surface-water stage, in feet ; 
x =distance from the observation well to the surface-water 

contact with the aquifer ("suboutcrop"), in feet ; 
t o =period of the stage fluctuation, in days ; 
S=coefficient of storage ; and 
T=coefficient of transmissibility, in gallons per day, per foot . 

For convenience equation 64 can be written 

2.1 ~YltoT= -logio (sr/2so) (65)x 

The form of equation 65 suggests a semilogarithmic plot of the 
log of the range ratio, s,/2so, for each observation well, versus the 
corresponding distance, x, as an expedient method of analyzing the 
observed data . The right-hand member of equation 65 represents
the slope of the straight line that should be defined by the plotted
data . If the change in the logarithm of the range ratio is selected 
over one log cycle of the plot, equation 65 becomes 

2.1VS/t,T=- 1 
or 

.4(Ax)ZST-4.44 (66)to 

If the field conditions fulfill the assumptions made in deriving equation 
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66, the straight line drawn through the data on the semilogarithmic 
plot should pass through the origin of the coordinate axes-that is, 
should intercept a value of rl2so=1 at a value of x=0. For the case 
of a stream of substantial width, partially penetrating the artesian 
aquifer, this intercept will usually be found at negative values of x, 
indicating an "effective" distance offshore to the suboutcrop . This 
effective distance mayor may not have physical significance depending 
on the nature of the flow field in the vicinity of the stream. For 
example, if the stream does not cut through the upper confining bed, 
stage changes in the surface-water body may still provide, through the 
changes in loading that are involved, a source of sinusoidal head 
fluctuation in the artesian aquifer along the stream location . Unless 
the loading changes are completely effective (100 percent tidal 
efficiency) in producing a stage range of 2so at x=0 in the aquifer, 
the straight-line intercept with the x axis will again be at some negative 
value of x, and will in part be an indication of the efficiency with 
which the aquifer skeleton accepts the changes in loading. However, 
it should be observed that regardless of the exact value of so in the 
aquifer, at x=0, the slope of the data plot described is unaffected . 
Therefore the T value computed by means of equation 66 will be 
correct regardless of the actual value in the aquifer of so. 

It is seen from equation 66 that it is necessary to know S in order 
to solve for T. Frequently, when the coefficient of storage is not 
known, it is possible to make a reasonable estimate of its value by 
studying the well logs and water-level records. 
The lag in time of occurrence of a given maximum or minimum 

ground-water stage, following the occurrence of a similar surface-
water stage, is given by Ferris (1951) as 

_x tos (67)tl-
2~rT' 

where t, is the lag in time . Solving this equation for the coefficient 
of transmissibility, and rewriting in terms of the usual Survey units, 
there follows 

2 

T=0.60toS (tl) (68) 

The only variables in equation 68 are evidently x and tl . Thus an 
arithmetic plot is suggested with the value of the distance, x, for each 
observation well, plotted against the corresponding value of the time 
lag, t. The slope of the straight line that should be defined by these 
plotted points will then give the value of xlt,, which appears to the 
second power in equation 68 . If the straight line that is drawn 
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through the plotted points should intersect the zero-timelag axis 
at a negative value of x it may be an indication of the effective distance 
offshore to the suboutcrop . 

In those situations where the aquifer is not fully penetrated or 
where it is under water-table (unconfined) conditions, the methods 
of analysis described in this section will be satisfactory if (a) the 
observation wells are far enough from the suboutcrop so that they are 
unaffected by vertical components of flow and (b) the range in fluctua­
tions is only a small fraction of the saturated thickness of the 
formation . 

AREAL METHODS 
NUMERICAL ANALYSIS 
By R. W . STALLMAN 

The equations presented in the preceding sections of this paper 
were derived by means of the calculus . Darcy's law combined with 
the equation of continuity (Rouse, 1950, p. 326) yielded the basic 
differential equations that described states of flow . In turn, solutions 
to these differential equations were found that satisfy the boundary 
conditions of a particular problem . Certain generalizations were 
made in regard to the boundary conditions so as to provide rather 
specific equations, which can be used with convenience to obtain a 
solution to the field problem. Among these generalizations are the 
assumptions of a constant head or discharge at some point or line, 
homogeneity of the aquifer, simple geometric form or shape of the 
aquifer, and complete penetration of the well or stream . Certainly 
for many field problems these conditions are fulfilled to a sufficient 
degree that the available formulas can be used to obtain reliable 
approximations of the values of T, S, or W. However, the ground­
water hydrologist frequently encounters problems for which the 
complicated boundary conditions cannot be expressed by simple 
mathematical relations . Furthermore, the complicated boundary 
conditions related to a given field problem seldom recur in nature 
in the same combination. Thus it could be poor economy to spend 
a large amount of time and energy deriving complicated analytical 
equations whose application might be limited to one problem . Under 
such circumstances it may be found more expedient to use numer­
ical methods of analysis for the quantitative investigation . 
Numerical methods have been used in other sciences for some time for 
the same purpose. Basic formulas and procedures have been de­
scribed by Southwell (1946, 1940) and many of his colleagues (Shaw, 
1953) . Scarborough (1950) and Milne (1953) have written extensively 
on the same subject and an application of numerical methods to 
ground-water investigations has been described by Stallman (1956) . 
The formal derivation of analytical equations for describing ground­
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water movement involves application of the rules of calculus for 
integrating, or summing, an infinite set of infinitesimal changes in 
head between two or more points in the flow region under study. 
In lieu of application of the rules of calculus to perform this addition 
conveniently, it would be possible to accomplish the same thing 
simply by addition of the infinite set of infinitesimals . The latter 
method is, of course, impractical unless approximations are intro­
duced . Thus an area may be calculated by considering that it is 
composed of small but finite parts, each having an area (Ax)(Ay) . 
By means of this more coarse subdivision of the area, the problem is 
reduced to the addition of a sensibly small and finite set of component 
parts instead of the infinite set of infinitesimal areas (dx) (dy) postu­
lated by the orthodox calculus . In brief this constitutes the basis 
of numerical analysis as applied in finding solutions to differential 
equations : the substitution of finite entities for the differential forms 
that appear in the fundamental differential equations. 

Consider, for example, the differential equation describing two-
dimensional unsteady flow in a homogeneous and isotropic aquifer, 
subject to recharge at a steady rate of accretion W. It can be shown 
that this equation has the form 

a2h+a2h-
(T 
S bh W 

axeaye) b~T' 
(69) 

where h is the head at any point whose coordinates are x, y. Let the 
differential lengths dx and dy be expanded so that each can be con­
sidered equivalent to a finite length w, and similarly let dt be con 
sidered equivalent to At . A plan representation of the region of flow 
to be studied may then be subdivided by two systems of equally 
spaced parallel lines at right angles to each other . One system is 
oriented in the x direction and the other in the y direction and the 
spacing of the lines equals the distance w (see fig. 33) . A set of 5 
gridline intersections or nodes, selected in the manner shown on 
figure 33, is called an array. Accordng to Southwell (1946, p. 19) 
the first two differentials in equation 69 can b,: expressed, in terms of 
the head values at the nodes in the array, in the following fashion : 

_a 2h_h,+h,-2h, 
6X2' w2 

and 
a2h h2+h4-2h,aye ­

w2 

where the subscripts of h refer to the numbered nodes of figure 33 . 
Substituting these equivalent expressions for the first two differentials 
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NOTES ; 

Filled circles indicate boundary nodes selected 
to approximate irregular boundary of the area 

The grid spacing w is an approximation of the 
differential distances dx and dy 

The five numbered nodes constitute an array 

FIGURE 33.-Finite grid and nomenclature used in numerical analysis . 

in equation 69, and letting bhlat be considered equivalent to Oho,/At, 
there follows 

h 7hi+h2+hs+h4-oho=[ST ~A, T w2 , (70) 

where Oho, is the change in head which occurs at node 0 through the 
time interval At . Depending on the type of data available, equation 
70 can be used to compute the ratios S/T and W/T, or the head 
distribution in time and space, in an aquifer of given size and shape. 
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Furthermore, the calculations involve only the use of simple arith­
metic. 

In working out a solution where a finite difference equation such as 
equation 70 is being applied to a problem in which the head distribu­
tion is required, the primary aim of the computing methods is to find 
the particular head values at all the nodal points (like points 0-4 of 
figure 33) such that the finite difference equation is satisfied at all 
nodes simultaneously . This head distribution can be found either 
by "relaxation" or "iteration" methods of numerical analysis . The 
computations are begun by assuming head values for all the nodes in 
the flow system . These initial estimates will not ordinarily satisfy
the finite difference equation and will require revision so that the 
equation will be satisfied at all points in the grid . Refinement of the 
head values is continued until accuracy is considered to be sufficient 
for the needs of the problem . 

If the refinement is made using a routine adjustment procedure,
it is termed an iteration method ; if it is made by approximation, it is 
termed a relaxation method. Consider the steady-state form of 
equation 70, which is 

hi +h,+h8+h4-4ho+ (71) 

Assume that it is desired to find the head distribution in an aquifer of 
known size and shape, the flow conditions (and/or head values) being
known along its perimeter, and the values of W and T, or their ratio,
being known . Substituting in equation 71 the initial set of assumed 
head values for nodes 0-4, and the known value of (W/T)w2 there 
follows 

hii+h2i+h31+h4i-4hoi+(T )w2=Ro, (72) 

where the subscript i is used to set apart or distinguish the head values 
that are initially assumed. The term Ro is the residual at node zero ; 
in other words, it is the remainder resulting from summation of the 
assumed and known values on the left side of the equation . Inasmuch 
as it is virtually impossible. to assume, an initial set of head values such 
that the summation indicated in equation 71 is zero, there will almost 
inevitably be a remainder or residual as shown in equation 72 . This 
residual, Ro , may be thought of as an indication of the amount and 
direction of excess curvature on the piezometric surface defined by
the assumed heads. The value of Ro is also an indication of the amount 
by which h0i must be changed so that in the next trial summation of 
head values the result will more closely approach the zero value 
required for complete satisfaction of equation 71 . 
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It can easily be shown that if the head at the zero node is changed 
by an amount AN=-Ro/4, the residual at that node will be reduced 
to zero . However, it should be kept in mind that equation 71 is to 
be tried on each array in the grid net and that residuals will appear 
at many if not all of the other nodes . Thus a head adjustment at 
one node will affect residuals at other nodes, and conversely subse­
quent head adjustments at adjacent nodes will affect the residual at 
the first zero node . Accordingly, several circuits must be made 
through the net before the residual values are reduced to zero or 
nearly zero. Successive circuits of nodal head adjustments amounting 
to -Ro/4, applied regularly over the net, constitute an iterative 
process. With practice the computer will recognize that the distribu­
tion of residuals can be improved more efficiently by either a larger 
or smaller head adjustment than indicated by -Ro/4. Applying such 
improvement tempered by judgment gained from experience is a 
relaxation method . 

FLOW-NET ANALYSIS 
By R . R . BENNETT 

In analyzing problems of ground-water flow, a graphical represen­
tation of the flow pattern is of considerable assistance and often 
provides the only means of solving those problems for which a math­
ematical solution is not practicable. The first significant development 
in graphical analysis of flow patterns was made by Forchheimer (1930) . 
A "flow net," which is a graphical solution of a flow pattern, is 

composed of two families of lines or curves . One family of curves 
represents the streamlines or flow lines, where each curve indicates 
the path followed by a particle of water as it moves through the 
aquifer in the direction of decreasing head . Intersecting the stream­
lines at right angles is a family of curves termed equipotential lines, 
which represent contours of equal head in the aquifer. 
Although the real flow pattern contains an infinite number of flow 

lines and equipotential lines, it may be conveniently represented by 
constructing a net that uses only a few of those lines . The flow lines 
are selected so that the total quantity of flow is divided equally be­
tween adjacent pairs of flow lines ; similarly the equipotential lines 
are selected so that the total drop in head across the system is evenly 
divided between adjacent pairs of potential lines. 
The change in potential, or drop in head between two equipotential 

lines in an aquifer, divided by the distance traversed by a particle of 
water moving from the higher to the lower potential determines the 
hydraulic gradient . Recognizing that this movement of a water par­
ticle is governed in part by the proposition that the flow path adopted 
will be the one involving the least work-that is, the shortest possible 
path between the two equipotential lines in question-it follows that 
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the direction of water movement is everywhere synonymous with 
paths that are normal to the equipotential lines. Hence the system
of flow lines must be drawn orthogonal to the system of equipotential
lines. 
A flow net constructed with the foregoing principles in mind is a 

pattern of "rectangles" in which the ratio of the mean dimensions of 
each "rectangle" is constant . If the net is constructed so that the 
sides of each rectangle are equal, then the net is a system of "squares." 
It should be recognized, however, that in flow fields involving curved 
paths of flow, the elemental geometric forms in the net are curvilinear 
and thus are not true squares ; however, the corners of each "square" 
are right angles and the mean distances between the two pairs of 
opposite sides are equal. If any one of these elemental curvilinear 
"squares" is repeatedly subdivided into four equal parts the sub­
divisions will progressively approach the shape of true squares . 
The proper sketching of a flow net by the graphical method is 

something of an art that is learned by experience ; however, the fol­
lowing points summarized from a paper by Casagrande (1937, p . 
136-137) may be helpful to the beginner : 
1 . Study the appearance of well-constructed flow nets and try to 

duplicate them by independently reanalyzing the problems they
represent. 

2 . In the first attempts at sketching use only four or five flow channels . 
3 . Observe the appearance of the entire flow net ; do not try to adjust

details until the entire net is approximately correct. 
4 . Frequently parts of a flow net consist of straight and parallel

lines, which result in uniformly sized true squares . By starting
the sketching in such areas, the solution can be obtained more 
readily. 

5. In flow systems having symmetry (for example, nets depicting
radial flow into a well) only a section of the net need be con­
structed, as the other part or parts are images of that section. 

6. During the sketching of the net, keep in mind that the size of the 
square changes gradually; all transitions are smooth and, where 
the paths are curved, are of elliptical or parabolic shape. 

Taylor (1948) recommends a somewhat different procedure for 
sketching flow nets . This procedure, called the procedure of explicit 
trials, has been found to have value in developing intuition for flow 
net characteristics . In this method a trial equipotential or flow line 
is established and the entire net completed as if that trial line were 
correct . If the completed net is not correct, the initial trial line is 
resketched and a new net is constructed . The adjustment of the trial 
line is judged from the appearance of the entire net and how well it 
conforms to the boundary conditions of the system . 
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For steady flow, with a particular set of boundary conditions, only 
one flow net exists . If at some subsequent time the boundary condi­
tions are altered, then after sufficient time has elapsed to reestablish 
the steady state, a different flow pattern would be developed and 
again there would be only one possible solution for the new set of 
boundary conditions . Thus before attempting to construct a flow 
net, it is important that the boundary conditions be established and 
carefully described . For example, consider the aquifer shown in fig­
ure 34, bounded by an impermeable barrier paralleling a perennial 
stream . Line AB, designating the stream, is obviously an equipo­
tential line along which the head is equal ; line CD marking the 
impermeable barrier, is evidently coincident with the limiting or 
boundary flow line . Accordingly, the equipotential lines will adjoin 
the barrier at right angles . The discharge through any channel or 
path of the flow net may be obtained with the aid of Darcy's law, 
one variation of which, as has been previously shown, may be written 
in the form 

Q=PIA. 

For convenience in applying this variation of Darcy's law, consider 
a unit width or thickness of the aquifer, measured normal to the 
direction of flow indicated by L in figure 34-that is, normal to the 
plane of the diagram. The preceding equation may then be rewritten 
for this unit thickness (in this example) of aquifer, and for one flow 
channel through the net as 

Aq=Plb, (73) 

where Oq represents the flow occurring between a pair of adjacent 
flow lines (one flow channel) and b is the spacing of the flow lines. 
If L represents the spacing, and oh the drop in head, between the 
equipotential lines, equation 73 becomes 

Aq=PAh CL) (74). 
Inasmuch as the flow net (figure 34) was constructed to comprise a 
system of "squares" the ratio b/L is equal to unity and the same 
potential drop occurs across each "square" . It follows then from 
equation 74 that the same incremental flow, Oq, occurs between 
each pair of adjacent flow lines . If there are of flow channels, the 
total flow, q, through a unit thickness of the aquifer, is given by 

q=nfAq. (75) 
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Fie-URx 34.-Flow net for a discharging well in an aquifer bounded by a perennial stream parallel to an impermeable barrier . 
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If there are nd potential drops, the total drop in head, h, is given by 

h=ndAh . (76) 

Substituting in equation 75 the values of Oq and oh given by equations 
74 and 76 respectively, there follows 

q=nr Ph. (77) 
d 

Noting that q represents the total flow through a unit thickness of 
the aquifer, the equation for total flow through the full thickness 
of the aquifer becomes 

Q=I
Phm, (78) 

where Q=flow through full thickness of the aquifer in gallons per 
day ; 

nf=number of flow channels ; 
nd =number of potential drops ; 
P=coefficient of permeability of the aquifer material, in 

gallons per day per square foot ; 
m=saturated thickness of aquifer, in feet ; 
h=total potential drop, in feet ; and 

Pm=transmissibility of the aquifer, in gallons per day per foot . 
The pi eceding discussion of the graphical construction of flow nets 

concerns two-dimensional flow fields in homogeneous and isotropic 
media. The graphical construction of flow nets for three-dimensional 
problems generally is impracticable ; however, many ground-water 
problems of a three-dimensional nature can be reduced to two 
dimensions without introducing serious errors . 
For two-dimensional problems involving simple anisotropy, such 

as a constant difference between the vertical and horizontal perme­
ability, or a directional area) transmissibility, the flow net can be 
constructed by the conventional graphical procedure (system of 
squares) provided the flow field is first transformed to account for the 
anisotropy . If the values of maximum or minimum permeability 
(or transmissibility) are designated P.Bx, and Pm,n, all the dimensions 
in the direction of P... must be reduced by the factor ~Pmt .RIP.; or, 
all dimensions in the direction of P.,. must be increased by the 
factor P.1P,Rin, . After the flow field is transformed, the net is 
constructed by graphical methods . Then the net is projected back 
to the original dimensions of the field . It will be found that the 
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projected net generally will no longer be a system of squares, and the 
equipotential and stream lines will not intersect at right angles . 
For areally nonhomogeneous aquifers-that is, those comprising 

subareas of homogeneous and isotropic media but of different trans-
missibility-the flow pattern cannot, according to theory, be repre­
sented by a single system of squares . If the flow net were constructed 
so that each flow path conducted the same quantity of water, one 
subarea could be represented by a system of squares, but the nets 
in the other subareas would consist of rectangles in which the ratio 
of the lengths of the sides would be proportional to the differences 
in transmissibility . If the flow lines from one subarea enter another 
subarea at an angle, the flow lines (and equipotential lines) would be 
refracted according to the tangent law. The graphical construction 
of a flow net under such conditions is extremely difficult and, with the 
data that are available for most ground-water problems, is generally 
impossible . However, Bennett and Meyer (1952, p . 54-58) have 
shown that by generalizing the flow net for such an area into a system 
of squares anddetermining the quantity of flow by making an inventory 
of pumpage in each of the subareas, the approximate transmissibility 
of the subareas may be determined . Although such an application of 
the method departs somewhat from theory, it is likely that for many 
areas it provides more realistic, areal transmissibilities than could be 
obtained by use of pumping-test methods alone. Whereas pumping 
tests may provide accurate values of transmissibilities they generally 
represent only a small "sample" of the aquifer. Flow-net analysis 
on the other hand may include large parts of the aquifer, and hence 
provide an integrated and more realistic value of the areal trans­
missibility . Moreover, by including comparatively large parts of 
the aquifer, the local irregularities that may appreciably affect some 
pumping-test analyses generally have an insignificant effect on the 
overall flow patterns . 
The application of flow-net analysis to ground-water problems has 

not received the attention it deserves ; however as the versatility of 
flow-net analysis becomes more widely known, its use will become 
more common . Such a method of analysis greatly strengthens the 
hydrologist's insight into ground-water flow systems ; it provides 
quantitative procedures for analyzing and interpreting contour maps 
of the water-table and piezometric surfaces . 
For other illustrations of flow-net construction, see figures 36 and 

38 . 

THEORY OF IMAGES AND HYDROLOGIC BOUNDARY ANALYSIS 

The development of the equilibrium and nonequilibrium formulas 
discussed in the preceding sections was predicated in part on the as­
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