The Effects of Boundary Conditions on the Steady-State Response of Three Hypothetical Ground-Water Systems -- Results and Implications of Numerical Experiments

U.S. Geological Survey, Water Supply Paper 2315

by O. Lehn Franke, and Thomas E. Reilly

This report is available as a pdf below


The most critical and difficult aspect of defining a groundwater system or problem for conceptual analysis or numerical simulation is the selection of boundary conditions . This report demonstrates the effects of different boundary conditions on the steady-state response of otherwise similar ground-water systems to a pumping stress. Three series of numerical experiments illustrate the behavior of three hypothetical groundwater systems that are rectangular sand prisms with the same dimensions but with different combinations of constant-head, specified-head, no-flow, and constant-flux boundary conditions. In the first series of numerical experiments, the heads and flows in all three systems are identical, as are the hydraulic conductivity and system geometry . However, when the systems are subjected to an equal stress by a pumping well in the third series, each differs significantly in its response . The highest heads (smallest drawdowns) and flows occur in the systems most constrained by constant- or specified-head boundaries. These and other observations described herein are important in steady-state calibration, which is an integral part of simulating many ground-water systems. Because the effects of boundary conditions on model response often become evident only when the system is stressed, a close match between the potential distribution in the model and that in the unstressed natural system does not guarantee that the model boundary conditions correctly represent those in the natural system . In conclusion, the boundary conditions that are selected for simulation of a ground-water system are fundamentally important to groundwater systems analysis and warrant continual reevaluation and modification as investigation proceeds and new information and understanding are acquired.

Table of Contents

PDF Files

U.S. Department of the Interior, U.S. Geological Survey
Persistent URL:
Page Contact Information: Contact USGS
Last modified: Friday, January 11 2013, 03:40:17 PM
FirstGov button  Take Pride in America button