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The Effects of Boundary Conditions on the Steady-State
Response of Three Hypothetical Ground-Water
Systems—Results and Implications of Numerical

Experiments
By O. Lehn Franke and Thomas E. Reilly

Abstract

The most critical and difficult aspect of defining a ground-
water system or problem for conceptual analysis or numerical
simulation is the selection of boundary conditions. This report
demonstrates the effects of different boundary conditions on
the steady-state response of otherwise similar ground-water
systems to a pumping stress. Three series of numerical ex-
periments illustrate the behavior of three hypothetical ground-
water systems that are rectangular sand prisms with the same
dimensions but with different combinations of constant-head,
specified-head, no-flow, and constant-flux boundary conditions.
In the first series of numerical experiments, the heads and flows
in all three systems are identical, as are the hydraulic conduc-
tivity and system geometry. However, when the systems are
subjected to an equal stress by a pumping well in the third
series, each differs significantly in its response. The highest
heads (smallest drawdowns) and flows occur in the systems
most constrained by constant- or specified-head boundaries.
These and other observations described herein are important
in steady-state calibration, which is an integral part of simulating
many ground-water systems. Because the effects of boundary
conditions on model response often become evident only when
the system is stressed, a close match between the potential
distribution in the model and that in the unstressed natural
system does not guarantee that the model boundary conditions
correctly represent those in the natural system. In conclusion,
the boundary conditions that are selected for simulation of a
ground-water system are fundamentally important to ground-
water systems analysis and warrant continual reevaluation and
modification as investigation proceeds and new information
and understanding are acquired.

INTRODUCTION

Flow simulation, particularly mathematical-numerical
simulation that generally relies on a digital computer to
solve the relevant numerical algorithm, is one of the most
useful tools available to assist the hydrologist in quan-
titatively analyzing and, thereby, increasing his or her

understanding of ground-water flow systems and specific
problems associated with them. Problems in ground-
water flow are classed with initial- and boundary-value
problems in applied mathematics, and solution of these
problems entails solving the governing differential equa-
tion (generally a second-order partial differential equa-
tion in ground-water flow problems) for the initial and
boundary conditions that apply to the problem under
study. Thus, definition of a ground-water system or prob-
lem for quantitative analysis involves careful identifica-
tion of the appropriate boundary-value problem. The in-
formation needed to define a boundary-value problem
in ground-water flow is summarized in table 1 in the con-
text of a simple systems diagram.

The quantitative description of a ground-water flow
system (table 1) requires (1) the external boundaries and
internal geometry of the system (geologic framework),
(2) the boundary conditions at the external boundaries
of the flow system in terms of heads and flows, and (3)
the distribution in space of the flow-medium
parameters — flow conducting (hydraulic conductivity or
transmissivity) and storage (storage coefficient or specific
storage). In transient problems, the initial conditions
(heads and flows in the system at some specified time)
also must be specified. Most standard texts on ground-
water hydrology provide further discussion of these topics
(for example, Bear, 1979).

Once the system is specified, a particular problem may
be defined by applying a stress to the system (table 1).
The solution to such a problem consists of determining
the response of the system to the stress in terms of heads,
or drawdowns, and flows.

For several reasons, selection of valid boundary con-
ditions is the aspect of defining a ground-water system
that is most crucial, most difficult, and also most sub-
ject to error. At best, the model boundary conditions can
only approximate the actual boundary conditions in the
natural system. Often, the boundary conditions that are

Introduction 1



Table 1. Information necessary for quantitative definition of a ground-water flow system in context of a general systems concept

Input »

System l

Qutput

Factors that define the
ground-water system

Input or stress applied
to ground-water system

Output or response of
ground-water system

i. Stress to be analyzed: 1.

—Expressed as volumes of water

added or withdrawn. —Defined in space.

—Defined as function of space and
time.

External and internal geometry of
system (geologic framework).

1. Heads, drawdowns, or pressures'.

—Defined as function of space and
time.

Boundary conditions

— Defined with respect to heads and
flows as a function of location
and time on boundary surface.

Initial conditions

— Defined in terms

of heads and

flows as a function of space.

. Distribution of hydraulic conducting

and storage parameters.

— Defined in space.

1Flows or changes in flow within parts of the ground-water system or across its boundaries sometimes also may be regarded as a dependent
variable. However, the dependent variable in the differential equations governing ground-water flow generally is expressed in terms of head,
drawdown, or pressure. Simulated flows across any reference surface can be calculated when the governing equations are solved for one of these
variables, and flows in real systems can be measured directly or estimated from field observations.

applied in a steady-state simulation differ from those used
in a transient-state simulation of the same system. In
many simulations of ground-water systems, the selection
of boundary conditions depends on the magnitude and
location of the stress on the system. The complexity of
ground-water systems and the large number of options
in conceptualizing boundary conditions require extreme
care and judgment by the investigator. Further discus-
sion of boundary and initial conditions in ground-water
systems is provided by Franke, Reilly, and Bennett (in
press).

This report demonstrates the effects of several types
of boundary conditions on the response of similar
ground-water systems to a given stress. This demonstra-
tion is achieved by analyzing a series of simple numerical
experiments with three hypothetical ground-water flow
systems. Because the experiments deal only with steady-
state (equilibrium) conditions, the description of these
systems is simpler (table 1) than for systems undergoing
transient-state conditions. The experiments also
demonstrate the effect of hydraulic conductivity on heads
and quantities of flow in the hypothetical ground-water
systems that differ only in their boundary conditions. In
addition, the implications of the experimental results for
simulation of ground-water systems, particularly model
calibration, and simulation of ground-water flow in con-
nection with solute transport studies are discussed.

The report contains two appendixes. Appendix 1 relates
the responses of the three hypothetical ground-water
systems to a change in hydraulic conductivity or an im-

2

posed stress to the respective governing differential equa-
tions and the mathematical formulation of the boundary
conditions. Appendix 2 demonstrates the conceptual
value of considering the interaction between an imposed
stress and the boundary conditions in terms of
superposition.

DESCRIPTION OF THREE HYPOTHETICAL
GROUND-WATER SYSTEMS

The geometry and boundary conditions of the three
hypothetical ground-water systems presented herein are
illustrated in plan view in column 1 of figure 1. All three
ground-water systems are rectangular prisms with the
same dimensions. Their width (along the y coordinate)
is 8 ft, their length (along the x coordinate) is 20 ft, and
their thickness perpendicular to the plane of the paper
is 1 ft. Thus, the two shorter lateral sides of the rec-
tangular prisms in figure 1 have areas of 8 ft2 (8 x 1 ft),
and the two longer lateral sides have areas of 20 ft2 (20
x 1 ft).

The boundary conditions of the three flow systems in-
dicated in figure 1 refer to the four lateral boundaries
of the rectangular prisms. The top and bottom faces of
the prisms (fig. 1) are stream surfaces (no-flow bound-
aries) in all three systems.

The types of lateral boundary conditions' that are
specified in the three ground-water systems include con-
stant head (at least one in all three systems), specified
head (system 1), no-flow (systems 2 and 3), and constant
flux (system 3). As an aid in differentiating these systems

Effects of Boundary Conditions on Response of Ground-Water Systems



in the following discussion, system 1 will be designated
as “two constant-head and two specified-head bound-
aries,” system 2 as “two constant-head and two no-flow
boundaries,” and system 3 as “one constant-flux, one
constant-head, and two no-flow boundaries.” Note that
system 2 (two constant head and two no-flow bound-
aries), with its prismatic geometry and boundary condi-
tions, is the system that is used to define Darcy’s law.
(See discussion of Darcy’s law in any textbook on ground-
water hydrology.) Furthermore, the three systems are
ordered with respect to decreasing dominance of constant
head and specified head boundaries. In system 1, all four
lateral boundaries are either constant or specified head;
in system 2, two are constant head; and in system 3, one
is constant head. The importance of this changing
dominance of one type of boundary condition will
become evident from the discussion of experimental
results in the following section.

The flow medium (aquifer material) in all three systems
is assumed to be isotropic and homogeneous. In each
series of experiments, the hydraulic conductivity (and
transmissivity) are equal in all three systems; however,
the value of hydraulic conductivity is changed in some
series. Also, confined flow is assumed in all systems for
all experiments; thus, neither the saturated thickness nor
the transmissivity of these systems change when the
systems are stressed.

EFFECTS OF BOUNDARY CONDITIONS ON THE
STEADY-STATE RESPONSE OF THE THREE
HYPOTHETICAL GROUND-WATER SYSTEMS

Description of Numerical Experiments

The nine numerical experiments are grouped into series
A, B,and C. Each series contains three numerical ex-
periments, one for each hypothetical flow system. Series

‘The nomenclature for boundary conditions in this report follows
the usage of Franke, Reilly, and Bennett (in press). A constant-head
boundary is a surface in three-dimensional space or a line in two-
dimensional space having the same head value at all points. All
piezometers open to different points on a surface of equal head show
the same water level with respect to a common datum. Thus, the word
“constant,” as used here, implies a value that is uniform in space. A
specified-head boundary, a more general type of boundary condition
of which the constant-head boundary is actually a special case, occurs
whenever head can be specified as a function of position and time over
a part of the boundary surface of a ground-water system. In this report,
head is specified only as a function of position for this boundary type
because only steady-state flows are investigated. A no-flow boundary
is a line or surface boundary of a ground-water system made up entire-
ly of streamlines. From the definition of streamline, a no-flow bound-
ary is impermeable because no water flows across it. A constant-flux
boundary occurs wherever the flux across a given part of the boundary
surface of a ground-water system is specified as constant. (The term
“flux” refers to the volume of fluid per unit time crossing a unit cross-
sectional surface area.) The constant-flux boundary condition, in which
the flux is considered uniform in space and constant in time, is a special
case of the more general specified-flux boundary, in which the flux across
a given part of the boundary surface is specified as a function of posi-
tion and time.

A (experiments Al, A2, A3) is the reference series to
which subsequent experiments are compared. In series B
(experiments B1, B2, B3), the hydraulic conductivity is
doubled. In series C (experiments C1, C2, C3), a pump-
ing well is added to represent a system stress. The effects
of boundary conditions on system response are
demonstrated in the following sections through com-
parison of results of experiments within the same series
and among differing series.

The results from experiments in series A and B were
obtained by application of Darcy’s law. The results for
series C were obtained from a modular computer code,
developed by McDonald and Harbaugh (1984), that
solves the governing differential equations numerically.

Results of Numerical Experiments

Series A Experiments

Pertinent data and results from the experiments in
series A are listed in table 2, and the distribution of heads
in this series is depicted in column 2 of figure 1. The most
striking feature of table 2 and column 2 of figure 1 is that
the flows and the head distribution are identical in all
three systems.

In preparation for later discussions, note again that the
boundary conditions differ significantly among the three
systems (fig. 1, col. 1). In systems 1 and 2, the head values
at the constant- and specified-head boundaries are fixed
as part of the definition of these systems. The head
distribution in system ! (two constant-head and two
specified-head boundaries) does not differ from that in
system 2 (two constant-head and two no-flow boundaries)
because of the combined effect of the boundary condi-
tions and other specified conditions (rectangular system
geometry and zero stress) that causes both systems to ex-
hibit one-dimensional flow. In this situation, the values
of specified head along the lateral boundaries in system
1 correspond exactly with the head distribution along the
lateral no-flow boundaries in system 2.

The constant-flux boundary at the left-hand side of
system 3 (fig. 1, col. 1) differs significantly from the other
boundaries in the three systems. A constant-flux boun-
dary acts as an active “forcing function” in the system;
that is, a specified quantity of water is “forced” to enter
the system along this boundary, regardless of how heads
at other boundaries and hydraulic conductivity values are
distributed in the system. In contrast, constant- and
specified-head boundaries are “passive” in that the quan-
tity of flow entering or leaving the system at these boun-
daries depends upon all other boundary conditions, the
distribution of flow parameters that define the system,
and the magnitude and distribution of stresses acting on
the system.

The value of head (100 ft) at the left-hand boundary
of system 3 in figure 1, column 2, can be verified easily
by solving Darcy’s law for its value as follows:

Effects of Boundary Conditions on Steady-State Response of Three Hypothetical Ground-Water Systems 3
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Figure 1. Boundary conditions and distributions of head in all nine numerical experiments.

(hl r)
Q=KA—+—~ 3
where Q =total discharge or throughflow of system
(cubic feet per day),
K = hydraulic conductivity of the earth material in
the prism (feet per day),
A = cross-sectional area of the prism perpendicular
to the direction of flow (square feet),
h;, h,=heads at the left- and right-hand boundaries
(feet), respectively, and

L = distance between the two parallel equipoten-
tial surfaces (feet).

Solving for h, and substituting appropriate numerical
values, we obtain

“KA 2ft/d -8

Results of the series A experiments demonstrate that
the same potential distributions and flows can be obtained
in steady-state simulations with distinctly different boun-
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Figure 1. Continued.

dary conditions. Furthermore, as stated above, series A
experiments provide a point of reference for the subse-
quent experiments. Comparison of results from the
experiments in series B and C with those from series A
elucidates the effect of the respective boundary conditions
on the response of these systems.

Series B Experiments

Pertinent data on the experiments in series B are listed
in table 3, and the head distributions for this series are

RESULTS OF SERIES C
EXPERIMENTS
(Head, in feet)

Two-dimensional flow patterns
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Experiment C3
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(4)

shown in column 3 of figure 1. The three systems in series
B differ from those in series A only in that the hydraulic
conductivity in series B has been doubled to 4 ft/d. A
comparison between tables 2 and 3 and between columns
2 and 3 in figure 1 reveals several pertinent facts.
The quantity of water flowing through systems 1 (two
constant-head and two specified-head boundaries) and
2 (two constant-head and two no-flow boundaries) in
series B (160 ft3/d) is double that in series A (80 ft3/d).
Simply stated, if the heads in these two systems are the

Effects of Boundary Conditions on Steady-State Response of Three Hypothetical Ground-Water Systems 5




Table 2. Pertinent data and results from series A numerical experiments for the three hypothetical ground-water flow systems

[Head distributions are shown in fig. 1, col. 2]

Constant hydraulic Head at Inflow at
Flow- conductivity left-hand left-hand
system Experiment of system boundary! boundary?
number number (ft/d) (ft) (ft3/d)
1 Al 100 (specified) 80 (unspecified)
2 A2 100 (specified) 80 (unspecified)
3 A3 100 (unspecified) 380 (specified)

'Head values at the left-hand boundaries are the maximum heads, heads at the right-hand boundaries are fixed at zero, and all three systems
are unstressed. Head values shown above also represent the total head difference in these systems.
2Because the systems are unstressed, are at steady state, and have one-dimensional flow, the outflow at the right-hand boundary must equal

the inflow at the left-hand boundary.

3Constant flux at left-hand boundary of system 3 equals 10 (ft*/d)/ft2.

Table 3. Pertinent data and results from series B numerical experiments for the three hypothetical ground-water flow systems

[Head distributions are shown in fig. 1, col. 3]

Constant hydraulic Head at Inflow at
Flow- conductivity left-hand left-hand
system Experiment of system boundary! boundary?
number number {ft/d) (ft (ft3/d)
1 B1 100 (specified) 160 (unspecified)
2 B2 100 (specified) 160 (unspecified)
3 B3 50 (unspecified) 380 (specified)

'Head values at the left-hand boundaries are the maximum heads, heads at the right-hand boundaries are fixed at zero, and all three ground-
water systems are unstressed. Head values shown above also represent the total head difference in these systems for series B experiments.
2Because the systems are unstressed, are at steady state, and have one-dimensional flow, the outflow at the right-hand boundary must equal

the inflow at the left-hand boundary.

3 Constant flux at left-hand boundary of system 3 equals 10 (ft*/d)/ft2.

same, the flow is directly proportional to the hydraulic
conductivity.

A comparison of the results for system 3 (one constant-
flux, one constant-head, and two no-flow boundaries) in
experiment B3 (fig. 1, col. 3; table 3) with experiment
A3 (fig. 1, col. 2; table 2) demonstrates the key features
of the constant-flux boundary condition. Because the flux
is specified at the left-hand boundary in both experiments
and the systems are not stressed internally, the inflow to
system 3 in both experiments must be the same (80 ft3/d).
However, doubling the hydraulic conductivity in series
B results in a halving of all heads in experiment B3 with
respect to those in experiment A3. A consideration of
Darcy’s law will verify this result.

The head distributions in systems 1 (two constant-head
and two specified-head boundaries) and 2 (two constant-
head and two no-flow boundaries) are identical in series
B and are also identical to their counterparts in series A
(fig. 1). Thus, with these particular boundary conditions,
a change in the hydraulic conductivity by a constant fac-
tor does not change the distribution of head in these
systems.

As in the series A experiments, the mutual effect of
boundary conditions and other specified conditions (rec-
tangular geometry and zero stress) in series B causes all
flow systems (fig. 1, col. 3) to exhibit one-dimensional

flow. Thus, again, heads and flows in experiments B1 and
B2 are equal even though the two systems differ in two
of the lateral boundary conditions.

In conclusion, analysis of series B experiments and
comparison of results with those from series A illustrate
that the similarities and differences between the heads and
flows in the three ground-water systems are controlled
largely by the boundary conditions of these systems.
Specifically, the heads in Al, A2, Bl, and B2 are deter-
mined by the boundary conditions (a combination of
constant- and specified-head and no-flow boundaries) and
are independent of the hydraulic conductivity. The heads
in experiments A3 and B3, with a constant-flux boun-
dary condition, however, are a function of the quantity
of flux and the hydraulic conductivity.

Series C Experiments

Pertinent data and results from series C experiments
are listed in table 4; the head distributions in the three
systems for this series are shown in column 4 of figure
1.2 In series C, as in series A, the hydraulic conductivity

2The rectangular flow domains of the three ground-water systems
were discretized into a square point-centered finite-difference mesh with
81 x 33 nodes. The module used to implement the point-centered finite-
difference discretization was developed by Arlen W. Harbaugh (U.S.
Geological Survey, written commun., 1984).

6 Effects of Boundary Conditions on Response of Ground-Water Systems



Table 4. Pertinent data and results from series C numerical experiments for the three hypothetical ground-water flow systems

[Head distributions are shown in fig. 1, col. 4}

Approximate head at
pumping well

Flow-system Experiment Constant hydraulic Head at Discharge (pumping node in
number number conductivity of left-hand of pumping numerical
system boundary’ well, Q simulation)?
(ft/d) (ft) (ft3/d) (ft)
1 Cl 2 100 (specified) 100 13
2 C2 2 100 (specified) 100 -7
3 C3 2 38 (approximate) 100 -38
(unspecified)

‘Maximum head in ground-water system.

*Constant head values of zero at right-hand boundaries are head datum in all three ground-water systems.

equals 2 ft/d in all three systems. The only difference be-
tween series A and C is that series C has a centrally placed
well pumping at the rate of 100 ft3/d. Thus, the three
ground-water systems in series C are subjected to an in-
ternal stress.

A comparison of the head distributions in the three
systems of series C (fig. 1, col. 4) reveals several
qualitative facts. First, unlike the head distributions in
series A and B (fig. 1, cols. 2, 3), those in this series dif-
fer significantly from one another. Second, as would be
expected in response to a point stress, flow patterns in
column 4 of figure 1 clearly are two dimensional, as evi-
denced by the curved potential lines, in contrast to the
one-dimensional flow patterns in series A and B. Third,
the heads become progressively lower (drawdowns due
to pumping become progressively larger) in the sequence
from system 1 through system 3 (fig. 1, col. 4). This is
particularly significant because it illustrates the effects
of boundary conditions on the response of systems to
stress as discussed later in this section.

Water budgets were developed for the three ground-
water systems in series C, the results of which are sum-
marized in table 5. In considering these water budgets,
recall the unstressed water budget for the three systems
in series A (table 2):

Inflow at left boundary = Outflow at right boundary
= 80 ft3/d.

In system 1 (two constant-head and two specified-head
boundaries) of series C, significant quantities of inflow
are derived from the lateral specified-head boundaries (95
ft3/d). Inflow from the left-hand boundary has in-
creased by only 2.5 ft3/d, and outflow to the right-
hand boundary has decreased by 2.5 ft3/d.

In system 2 (two constant-head and two no-flow boun-
daries), the sources of water to the pumping well are iden-
tified readily. Inflow from the left-hand constant-head
boundary has increased by 50 ft3/d from 80 ft}/d in the
unstressed system in series A to 130 ft3/d, and outflow
to the right-hand constant-head boundary has decreased
by 50 fti/d to 30 ft3/d.

In system 3 (one constant-flux, one constant-head, and
two no-flow boundaries) of series C, the only possible
source of increased recharge to the system is the right-
hand constant-head boundary. Thus, the water pumped
from the well (100 ft3/d) is derived from the left-hand
constant-flux boundary (80 ft3/d) and from induced
recharge at the right-hand constant-head boundary (20
ft3/d). In all three systems, the right-hand boundary is
a constant head. Only in experiment C3 is the gradient
at the right-hand boundary reversed (fig. 1, col. 4).

The differing responses of the three ground-water
systems to the stress exerted by the pumping well in series
C are related clearly to the boundary conditions, and this
becomes obvious when we recall that the heads and flows
in the three systems were identical in series A, where the
systems were unstressed (fig. 1, col. 2; table 2). A com-
parison of water budgets and head distributions in series
A with those in series C illustrates the effects of different
types of boundary conditions when the system is stressed.
Investigating the stressed systems by superposition, as
discussed in Appendix 2, reveals the role of the various
boundaries as sources of water to the pumping well even
more clearly.

The importance of the constant- and specified-head
boundaries as sources of water in series C experiments
is indicated by the total flow of water through the three
systems (table 5). In system 1, with two constant- and
two specified-head boundaries, the total flow (inflow or
outflow) is 177.5 ft3/d; in system 2, with two constant-
head boundaries, total flow is 130 ft3/d; and, in system
3, with one constant-head boundary (and one constant-
flux boundary), total flow is 100 ft3/d. Furthermore,
comparison of the head distributions in the three systems
(fig. 1, col. 4) indicates that the closer the constant- or
the specified-head boundaries are to the pumping well,
the more effectively these boundaries will maintain heads.

The previous discussion demonstrates the control ex-
ercised by constant- and specified-head boundaries on the
heads and flows in the three systems. An important
characteristic of simulated constant-head boundaries is
that they are capable of providing any quantity of water
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Table 5. Water budgets' for series C experiments

[Boundary conditions and heads are shown in fig. 1. All flows are in cubic feet per day]

Flow- Inflow from Inflow from Inflow from Outflow to
system Experiment left-hand lateral right-hand Outflow right-hand
number number boundary boundaries boundary from well boundary

1 Cl 82.5 (unspecified) 95 (unspecified) 0 - 100 -77.5
2 C2 130 (unspecified) 0 0 - 100 -30
3 C3 280 (specified) 0 20 - 100 0

! Inflow components are designated arbitrarily as positive, and outflow components, as negative ( ~). Thus, to maintain continuity, the algebraic

sum of the entries in any row must equal zero.

2 Constant flux at left-hand boundary of system 3 equals 10 (ft3/d)/ft2.

that is required, even though the heads in the aquifer must
decrease and the gradients to the well must increase as
more water is pumped from the well. In real ground-water
systems, the physical limit on drawdown at the pumping
well imposes a constraint on pumpage. This physical con-
straint, however, does not exist in numerical or
mathematical simulations of systems.

IMPLICATIONS OF NUMERICAL EXPERIMENTS
FOR SIMULATION OF GROUND-WATER
SYSTEMS

This discussion relates the results of the experiments
depicted in figure 1 to the simulation of ground-water
systems. (The significance of the mathematical formula-
tion of the experiments is discussed in Appendix 1). The
simplified geometry of the three flow systems helps to
verify the observations and conclusions herein but does
not restrict their validity.

One of the key elements in describing or defining a
ground-water system, and probably the one most subject
to error, is the specification of appropriate boundary con-
ditions. The boundary conditions for the three systems
used as examples in this study differ significantly (fig.
1, col. 1). The heads in system 1 are the most constrained,
in that the four lateral boundaries are either constant head
or specified head. Heads in system 2 are constrained by
two lateral constant-head boundaries (the left- and right-
hand boundaries). The heads in system 3 are the least con-
strained in that the system has only one constant-head
boundary. Systems 1 and 2 are similar in that all bound-
ary conditions are constant head, specified head, or no
flow. System 3 differs from systems 1 and 2 in that it has
one constant-flux boundary. The observed differences in
system response in figure 1, resulting primarily from
variations in boundary conditions, suggest important
general implications for system simulation that are
discussed further in the following sections.

Model Calibration

The process of simulating natural ground-water
systems often includes a steady-state “calibration” of the

unstressed system, which involves a continuing com-
parison of model heads and flows with corresponding
field measurements from the unstressed natural system,
followed by adjustments in the model if these com-
parisons are not sufficiently close. Hydraulic parameters
(hydraulic conductivity and transmissivity) are adjusted
routinely in the calibration process. In most model
studies, however, adjustments during calibration do not
involve changes in boundary conditions. In series A ex-
periments, the heads and flows in all three systems are
identical (table 2) despite the significant differences in
boundary conditions. This suggests that the effect of
boundary conditions on system response should be con-
sidered at every phase of an investigation involving
simulation, including the calibration phase, and that the
process of calibration might include sensitivity analyses
on arbitrarily selected boundary conditions to verify the
validity of the selected boundary types.

The role of boundary conditions in the calibration
process is illustrated by the results of series B experiments
(fig. 1, col. 3; table 3). The heads in systems 1 and 2 are
fixed, and the flow through the system is dependent on
the hydraulic conductivity. Thus, the heads in ex-
periments Al, A2, B1, and B2 (fig. 1; tables 2, 3) remain
the same, and the flows change in proportion to the
hydraulic conductivity. In experiment B3, however, the
flow is specified, and the heads in the system adjust ac-
cording to the quantity of flow and the distribution of
hydraulic conductivity. Thus, comparison of results of
experiments A3 and B3 shows that the flow stays the
same, whereas the heads change inversely with the
hydraulic conductivity.

Implications of these observations for the process of
calibration are as follows:

1. Heads in systems that are bounded predominantly
by constant- and specified-head boundary condi-
tions are insensitive to changes in hydraulic con-
ductivity.

2. Comparison of measurements or estimates of flow
in the natural ground-water system with cor-
responding simulated flows is just as critically im-
portant in the calibration process as the com-
parison of observed heads with simulated heads.
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Solute Transport Analysis

The two immediately preceding observations also are
relevant to ground-water solute transport simulation.
Simulation of solute transport involves coupling a
ground-water flow model that calculates the spatial
distribution of ground-water velocities and a transport
model that calculates changes in the concentration of
solute as a function of space and time. Because transport
analysis involves a very local area of interest, one com-
mon approach to solute transport simulation in two
dimensions is to bound the local flow system containing
the contaminant plume with specified head boundaries,
to calculate ground-water heads within the area surround-
ed by the specified heads with the flow model, and to
determine a velocity distribution based on these calculated
heads.?

Because the heads calculated in this approach are con-
strained by the nearby specified-head boundaries, they
usually compare well with observed heads in the real
system. This approach, however, does not allow possibly
large local variations in hydraulic conductivity and
coupled variations in local fluxes in the real system to
be accounted for in the calculation of the simulated heads
in the neighborhood of the contaminant plume because
systems constrained in this manner (for example, ex-
periments Al, A2, BI, and B2) are insensitive to hydraulic
conductivity; that is, any hydraulic conductivity value
gives almost the same head distribution. Thus, this ap-
proach results in possibly large errors in simulated fluxes
in the neighborhood of the contaminant plume, which,
in turn, cause large errors in the calculated velocity
distribution.

In conclusion, an extension of point 2 in the previous
section, “Model Calibration,” applies to transport
analysis. To insure that simulated ground-water velocities
correspond closely to velocities in the real system,
simulated flows (in addition to simulated heads) must cor-
respond to those occurring in the real system.

Effects of Stress Magnitude

A comparison of series C results with those from series
A and B demonstrates one of the most important points
in this discussion —that the differences between the ef-
fect of different boundary conditions on system response
become greater when the system is under stress and in-
crease with increasing stress; for example, the stress in
series C (100 ft3/d) is relatively large compared to the flow
through the unstressed series A and B systems (80 ft3

3The value of ground-water velocity at a point is the product of the
hydraulic conductivity and hydraulic gradient at the point divided by
the average porosity of the earth material in the neighborhood of the
point.

/d,)% and the head distributions and flows in series C ex-
periments differ significantly from one another (fig. 1,
col. 4; tables 4, 5). Furthermore, because the heads in
systems Cl1, C2, and C3 are progressively less constrained
by constant- and specified-head boundaries, they decline
from experiment C1 through C3.

If the effects of different boundary conditions in other-
wise similar systems become more evident as the stress
is increased, then the effects of the stress in series C ex-
periments, which is large with respect to flows in the
unstressed system, should become less pronounced as the
stress is decreased. To verify this point, stresses equaling
1 and 10 ft3/d, in addition to 100 ft3/d, were applied to
the three ground-water systems in series C.

The drawdowns for these stresses are summarized in
table 6, wherein it is assumed that the maximum
drawdowns in the stressed systems occur at the pumping
well (pumping node in the numerical simulation). The
drawdown at the pumping well for a stress of 100 ft3/d
can be calculated by subtracting the head at the pump-
ing well (table 4) from the original unstressed head at that
location, which is 50 ft; for example, in experiment Cl1,
the drawdown at the pumping well equals 50 ft minus
13 ft, or 37 ft. Because the three hypothetical ground-
water systems are confined and, therefore, linear systems
(exhibit a linear relation between system stress and system
response), the drawdowns listed in table 6 are directly pro-
portional to the system stress relative to the known
drawdowns for a stress of 100 ft3/d.

Table 6. Drawdowns resulting from three selected well-
discharge rates at the pumping well in the three ground-water
flow systems

Drawdown
(ft)

Well discharge
(ft3/d)

Flow system Flow system Flow system

1 2 3
1 0.37 0.57 0.88
10 3.7 5.7 8.8
100 37 57 88

The data in table 6 indicate that for a stress of 1 ft3/d,
the drawdowns everywhere in all three hypothetical
ground-water systems are less than 1 ft. With the 10-ft
contour interval used for these hypothetical systems
(similar to contour intervals used in potentiometric maps
of natural systems) and considering the natural small-
scale background fluctuations in water levels (“noise”) and
paucity of water-level data that probably would be en-
countered if these systems were natural systems, water-

4The magnitude of a local stress is usually small relative to the total

water budget for a regional or subregional ground-water system,
SDrawdown data at the pumping well also can be obtained directly
from table A-2.1 in Appendix 2.
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level maps of the three systems can be regarded as vir-
tually indistinguishable when a stress of 1 ft3/d is im-
posed. However, the source of water to the pumping well
still differs significantly among the three systems, and the
percentage of total water that is derived from each bound-
ary is the same as the percentage for a stress of 100 ft3/d
(or any other pumping rate at this location) and can be
calculated easily from the data in table 5 by assuming a
linear relation between pumping rate and boundary flows.

Potentiometric maps of the three hypothetical ground-
water systems at a well discharge of 10 ft3/d are shown
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in figure 2. At this level of stress and a contour interval
of 10 ft, differences in head among the three systems are
barely discernible. The maps for system 1 (two constant-
head and two specified-head boundaries) and system 2
(two constant-head and two no-flow boundaries) are
barely distinguishable from one another and do not dif-
fer significantly from maps of the unstressed systems (fig.
1, col. 2). As might be expected from previous discus-
sion of the three systems, the water-level contours in
system 3 (one constant-flux, one constant-head, and two
no-flow boundaries) show the greatest deviation from
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Figure 2, Distribution of head in a series of experiments in which hydraulic conductivity is a constant of 2 ft/d and the system
is stressed by a centrally placed well discharging at a rate of 10 ft3/d.

10 Effects of Boundary Conditions on Response of Ground-Water Systems



unstressed water levels, particularly in the left-hand part
of the system near the constant-flux boundary. However,
these differences probably would be much less apparent
and more difficult to interpret if these maps were being
compared to a potentiometric map from a “noisy” and
more complex natural system.

Comparison of the three pumpage stresses (1, 10, and
100 ft3/d) with their associated water-level maps il-
lustrates a basic tenet of ground-water systems simu-
lation —that the ability of ground-water models to predict
the response of natural systems to stress generally depends
on the magnitude of that stress; for example, suppose that
one of the hypothetical ground-water systems corresponds
to the natural system under study and that the boundary
conditions of this system are, in part, unknown or uncer-
tain. Model calibration to measured water levels resulting
from a pumping stress of 1 ft3/d easily could produce
a close match between simulated and measured water
levels even if the boundary conditions used in the model
bore little resemblance to those in the natural system.
Whethegthis model, when calibrated at a stress of 1ft3/d,
would predict correctly the natural system in response
to a stress of 10 or 100 ft?/d would depend in large
measure on how well the boundary conditions in the
model correspond to those in the natural system.

In conclusion, one reason why the ability of ground-
water models to predict natural system response is stress
dependent is that specification of boundary conditions
is uncertain. Thus, the predictive capability of a model
is most reliable when the stress to be simulated is not
significantly greater than the stress already observed in
the natural system and used in model calibration.

The concepts presented herein suggest that, during all
phases of a ground-water investigation, the hydrologist’s
concept of the natural system must be reconsidered con-
tinually and the physical characteristics of the various
postulated boundary conditions must be related con-
tinually to the evolving concept of the natural system.
Furthermore, an analysis of historical stress-response data
can improve the selection of boundary conditions as well
as other aspects of ground-water simulation through
mathematical-numerical models.

SUMMARY AND CONCLUSIONS

The most critical aspect in describing or defining
ground-water systems for purposes of simulation is the
specification of appropriate boundary conditions; this is
the aspect most subject to error. The goal of simulation
is to represent the physical system in its essential features
as a mathematical-numerical or other appropriate type
of model. Essential features include hydraulic character-
istics related to the occurrence and movement of ground
water at the boundaries of the natural ground-water
system that is isolated for study. Boundary conditions

determine the hydraulic characteristics of the system at

its boundaries; correct specification of boundary condi-

tions in a model means that the boundary conditions in
the model correspond sufficiently to those in the natural
system to ensure that the response of model and natural
system to the same hydraulic stress will match acceptably.

A series of numerical experiments on three hypothetical
ground-water systems is used to illustrate this critical
nature of boundary conditions. These three hypothetical
ground-water systems are rectangular sand prisms with
the same dimensions but with different combinations of
constant-head, specified-head, no-flow, and constant-flux
boundary conditions. In the first series of numerical ex-
periments, the heads and flows in all three systems are
identical, as are the hydraulic conductivity and system
geometry. However, when the systems are subjected to
an equal stress by a pumping well in the third series, each
differs significantly in its response. The highest heads

(smallest drawdowns) and flows occur in the systems most

constrained by constant- or specified-head boundaries.

These and other results indicate that —

1. The principal observation concerning the results of the
numerical experiments on the three hypothetical
ground-water systems that are the same in all
respects except their boundary conditions is that
these three systems did in fact respond very dif-
ferently to an imposed stress. This observation
underscores the fact that differing boundary con-
ditions define different ground-water systems, even
if the geometry and hydraulic conductivity of the
systems are identical. Stating the same idea from a
slightly different viewpoint — if a simulated ground-
water system has incorrect boundary conditions
(conditions that do not correspond to those in the
natural system under study), then the simulation ex-
ercise is solving the wrong problem and, by defini-
tion, will provide the wrong solution.

2. A close match between the head distribution in a
model and that in the natural system does not
guarantee that the two systems correspond in their
physical and hydraulic features nor in their bound-
ary conditions. Model calibration with respect to
heads alone is not reliable for unstressed steady-state
analyses but tends to improve in stressed systems
and usually becomes increasingly reliable as the
stress increases. In stressed and unstressed systems,
however, correct boundary conditions are essential
to the representation of sources of water and pat-
terns of flow within the system. This is illustrated
clearly by the water budgets for the three stressed
systems (series C experiments), in which the percen-
tage of water to the pumping well from the major
sources differed significantly as a result of the dif-
fering boundary conditions in the systems. Thus, in-
corporating measurements and estimates of ground-
water flow from the natural system in the process
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of model development and assessment of its accept-
ability (the calibration process) is of utmost
importance.

3. The effects of boundary conditions on system response
should be considered at every phase of an investiga-
tion involving simulation, including the calibration
phase, which should include sensitivity analyses on
arbitrarily selected boundary conditions.

In conclusion, the boundary conditions that are
selected for simulation of a ground-water system are
critical to the success of a ground-water systems analysis.
They deserve continual reevaluation and modification as
investigation proceeds and new information and under-
standing are acquired.
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APPENDIX 1. Comparison of the Governing Differential Equations and Boundary Conditions That
Apply to the Three Hypothetical Ground-Water Systems Analyzed in this Report

This appendix takes a small additional step in relating the
system responses (potential distributions and flows), which are
illustrated by the nine experiments discussed in the main text,
to the governing differential equations and boundary conditions.
All three ground-water systems analyzed in this report are
assumed to be two dimensional, and all nine numerical examples
are steady state. A general and often-used ground-water flow
equation for two-dimensional, steady-state problems is

ad oh ad dh
E(TXa—x)+W(TyW)+W(X,Y)—O. (A1)

where T, T, =transmissivity values in the x and y directions
(square feet per day), respectively, and
W =an areal input or withdrawal of water per unit
time (feet per day).

As written, T and W can be varied as a function of location
x, y).

In the three systems under discussion, T, and T, are
constant and equal; that is, the flow domains are assumed to be
isotropic and homogeneous with respect to transmissivity. Thus,
equation Al can be simplified further to

d*h d*h W
§+a—yz+—f(x,y)—0. (A2)

The ground-water flow equations and boundary conditions that
apply to the nine numerical experiments depicted in figure 1,
are listed in table A-1.1 and are expressed in formal
mathematical notation.

Only two different governing equations are given in table
A-1.1,

d*h 9%h
W + 5? =0, (A3)
which is known as the Laplace equation, and
9*h dth W
a—x;+a—)ﬂ+?(x,)’)—0, (Ad)

which is the same as equation A2.

Series A and B Experiments

Because all six experiments in series A and B use the same
governing differential equation (table A-1.1), it is necessary to

look beyond the equations in comparing these experiments and
to consider the boundary conditions to explain the difference
in response between system 3 and systems 1 and 2. The key fac-
tor pertains to what is specified in the governing equations and
boundary conditions. Examination of the governing differen-
tial equation (eq A3) and the boundary conditions for systems
1 and 2 in series A and B reveals that the hydraulic conductiv-
ity or transmissivity does not enter into the mathematical for-
mulation of these four problems. Thus, any constant value of
hydraulic conductivity in an isotropic and homogeneous system
will give the same head (or potential) distribution. In other
words, the head distribution in these four problems is indepen-
dent of the transmitting properties of the porous medium and
is determined entirely by the boundary conditions. This is the
reason for the previous observation that the head distribution
remained unchanged in the experiments for systems 1 and 2 in
series A and B. In contrast, the specified-flux boundary condi-
tion for the left-hand side of system 3 contains the hydraulic
conductivity. Thus, the head (or potential) distribution in this
system is dependent on the transmitting properties of the
medium, as was shown in the numerical results for experiments
A3 and B3.

Series C Experiments

In series C experiments, a local stress is given as part of the
problem definition. In these experiments, the dependence of the
head distribution on the value of the transmissivity that is as-
signed can be easily inferred because T appears explicitly in the
governing equations.

The reason for this comparison of the mathematical formula-
tions for the experiments described herein is to emphasize the
importance of boundary conditions in problem definition. In
series A and B, the head distributions for systems 1 and 2 are
determined entirely by the boundary conditions and are indepen-
dent of the medium transmitting properties. In series C ex-
periments (fig. 1, col. 4), the head response of the three systems
and the source of water to the pumping well differ greatly even
though the governing differential equations are identical.
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Table A-1.1. Governing differential equations and boundary conditions that apply to the hypothetical ground-water systems

in the three series of numerical experiments depicted in figure 1

Flow-
system
number Series A and B! Series C
! Governing equation: Governing equation:
3%h d%h
o = d?h 9*h W
2 gy? —+—+ ,y)=0
ox y ax2  dy? TI’—(x Y

Boundary conditions:

h(0,y) =100
h(20,y)=0
h(x,0) = 100-5(x)
h(x,8) = 100-5(x)

Boundary conditions:
(Same as A and B series)

2 Governing equation: . .
Governing equation:
d*h 9*h
—t—= 3h #h W
2 2 —+—+ ,v)=0
o~ by oy T T

Boundary conditions:

Boundary conditions:

h(0,y) =100 .
h(20,y) =0 (Same as A and B series)
dh
g(x,O) =0
dh
ay(x,8) =0
3 Governing equation: Governing equation:
2 Zh
y ax: oy T TOYT

Boundary conditions
ain

éh
&(0,)’) = Y

h(20,y)=0

ﬁ(x,O) =0
dy

dh
a—y(x,8) =0

Boundary conditions:
(Same as A and B series)

1Boundary conditions in the six experiments in series A and B are expressed in two dimensions (x,y); therefore, the corresponding differential
equations also must be expressed in two dimensions. However, the flow patterns in these examples are one dimensional (fig. 1) because of
the rectangular geometry and lack of internal sources or sinks.
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APPENDIX 2. Application of the Principle of Superposition as an Aid in Analyzing the Relation
Between Boundary Conditions and the Response of the Three Ground-Water

Systems to Stress

This appendix describes the application of the principle of
superposition in the analysis of the response of the three ground-
water systems to stress in series C experiments and demonstrates
the conceptual as well as the quantitative value of analyzing
the relation between an imposed stress and the boundary con-
ditions of the system in terms of superposition. The principle
of superposition is defined and discussed in detail by Reilly,
Franke, and Bennett (in press).

The boundary conditions used and the drawdown patterns
obtained by applying superposition to analyze only the effect
of the pumping stress on the three systems in series C (fig. 1,
col. 4) are depicted in figure A-2.1. In addition, water budgets
for the three stressed systems in which the response to stress
is analyzed by superposition are summarized in table A-2.1.

Compare figure A-2.1 and table A-2.1 with column 4 of
figure 1 and tables 4 and §, which give information on the three
stressed ground-water systems in terms of absolute heads. When
superposition is applied to system 1 to analyze the effect of the
centrally placed well pumping at the rate of 100 ft3/d (fig.
A-2.1), the four lateral boundary conditions are all constant
drawdown (s) with s = 0. Thus, all four boundaries will con-
tribute some water to the well discharge. However, because of
the proximity of the two longest lateral boundaries to the well,
it is reasonable to assume that most of the well discharge will
be obtained from them.

The entries in table A-2.1 do indicate that for system 1 the
inflows from the left- and right-hand boundaries (2.5 ft3/d) due
to the pumping well are small relative to the contributions of
the two lateral boundaries (95 ft3/d). By definition of super-
position, if the drawdowns in figure A-2.1 for system 1 (or any
other system) are subtracted from the heads in the unstressed
system (fig. 1, col. 2), the result must be the distribution of ab-
solute heads in column 4 of figure 1; for example, in system
1, the absolute head at the location of the pumping well in the

unstressed system (fig. 1, col. 2) is 50 ft, the drawdown at the
pumping well in figure A-2.1 is about 37 ft, and the absolute
head at the pumping well in column 4 of figure 1 is about 13 ft.

In system 2, the two possible sources of water to the pump-
ing well are the left- and right-hand constant-head boundaries
at which the drawdown (s) equals zero (fig. A-2.1). In this sim-
ple, symmetric system, we know without results from a
numerical model that one-half of the well discharge (50 ft3/d)
must be derived from each boundary (table A-2.1). This in-
flow of 50 ft*/d at the two constant-head boundaries in super-
position represents 50 ft3/d of increased inflow at the left-hand
boundary and 50 ft*/d of decreased outflow at the right-hand
boundary in the absolute-head system (fig. 1, col. 4). Thus, in
a water budget for the absolute head system (table 5), the in-
flow at the left-hand boundary equals 80 ft3/d plus 50 ft3/d
for a total of 130 ft3/d, and the outflow at the right-hand bound-
ary equals 80 ft’/d minus 50 ft3/d for a total of 30 ft3/d.

In system 3, the only possible source for the discharge of the
pumping well in superposition is inflow from the right-hand
constant-head boundary at which drawdown (s) equals zero (fig.
A-2.1; table A-2.1). This inflow, based on superposition,
represents decreased outflow to the right-hand boundary in the
absolute-head system. Thus, in the absolute-head system, the
original outflow of 80 ft/d at the right-hand boundary is re-
duced by 100 ft3/d, which results in a net inflow at this bound-
ary of 20 ft3/d (table 5).

The advantages of using superposition to analyze systems
undergoing stress are discussed in detail by Reilly, Franke, and
Bennett (in press). The principle of superposition can be ex-
tremely valuable in the conceptual as well as quantitative con-
sideration of how a system reacts to stress or, more specifical-
ly, how the boundary conditions ultimately determine the way
in which the system will react to stress.
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Figure A-2.1. Boundary conditions used and the drawdown patterns obtained from analyzing only the effect of the pumping
stress (applying the principle of superposition) on the three hypothetical ground-water systems in series C experiments.
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Table A-2.1. Drawdowns at pumping well and water budgets' for the three hypothetical ground-water flow systems in series
C experiments (fig. A-2.1) utilizing the principle of superposition

Drawdown at Inflows (ft3/d)
Flow- pumping well
system Experiment (pumping node in Left-hand Two lateral Right-hand
number number numerical simulation) boundary boundaries boundary
(ft)

1 Cl 37 2.5 95 2.5

2 C2 57 50 0 50

3 C3 88 0 0 100

'By using the principle of superposition, the sum of the inflows from boundaries must equal the discharge of the pumping well, which in these
examples is 100 ft3/d.
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