USGS:Science for a changing world

USGS Workshop: SEISMIC AND TSUNAMI HAZARD IN PUERTO RICO AND THE VIRGIN ISLANDS
Colegio de Ingenieros y Agrimensores, San Juan, March 23-24, 1999


Workshop Home Page
Executive Summary
State of Knowledge
Working Group Reports:
 Marine geology/ geophysics
 Paleoseismology
 Earthquake seismology
 Engineering
 Tsunamis
 Societal concerns
Workshop Goals
Participants
Agenda
Acknowledgements

Executive Summary

Puerto Rico and the Virgin Islands are located at an active plate boundary between the North American plate and the northeast corner of the Caribbean plate. The region was subject in historical times to large magnitude earthquakes and devastating tsunamis. A major downward tilt of the sea floor north of Puerto Rico and the Virgin Islands, large submarine rockslides, and an unusually large negative gravity anomaly are also indicative of a tectonically active region. Scientists have so far failed to explain the deformation of this region in a coherent and predictable picture, such as in California, and this has hampered their ability to assess seismic and tsunami hazards in the region. The NE corner of the Caribbean is unique among the seismically-active regions of the United States in that it is mostly covered by water. This fact presents an additional challenge for seismic and tsunami hazard assessment and mitigation.

The workshop, convened in San Juan on March 23-24, 1999, was "historic" in that it brought together for the first time a broad spectrum of scientists, engineers, and public and private sector officials who deal with such diverse questions as tectonic models, probabilistic assessment of seismic hazard, prediction of tsunami runup, strong ground motion, building codes, stability of man-made structures, and the public’s preparedness for natural disasters. It was an opportunity for all the participants to find out how their own activity fit into the broad picture of science and how it aids society in hazard assessment and mitigation. In addition, the workshop was offered as a continuing education course at the Colegio de Ingenieros y Agrimensores de Puerto Rico, which assured a rapid dissemination of the results to the local community. A news conference which took place during the workshop alerted the public to the efforts of the USGS, other Federal agencies, the Commonwealth of Puerto Rico, universities and the private sector.

During the first day of the workshop, participants from universities, federal institutions, and consulting firms in Puerto Rico, the Virgin Islands, the continental U.S., Dominican Republic, and Europe reviewed the present state of knowledge including a review and discussion of present plate models, recent GPS and seismic reflection data, seismicity, paleoseismology, and tsunamis. The state of earthquake/tsunami studies in Puerto Rico was presented by several faculty members from the University of Puerto Rico at Mayaguez. A preliminary seismic hazard map was presented by the USGS and previous hazard maps and economic loss assessments were considered. During the second day, the participants divided into working groups and prepared specific recommendations for future activities in the region along the six following topics below. Highlights of these recommended activities are:

Marine geology and geophysics – Acquire deep-penetration seismic reflection and refraction data, deploy temporary ocean bottom seismometer arrays to record earthquakes, collect high-resolution multibeam bathymetry and side scan sonar data of the region, and in particular, the near shore region, and conduct focussed high-resolution seismic studies around faults. Determine slip rates of specific offshore faults. Assemble a GIS database for available marine geological and geophysical data.

Paleoseismology and active faults - Field reconnaissance aimed at identifying Quaternary faults and determining their paleoseismic chronology and slip rates, as well as identifying and dating paleoliquefaction features from large earthquakes. Quaternary mapping of marine terraces, fluvial terraces and basins, beach ridges, etc., to establish framework for understanding neotectonic deformation of the island. Interpretation of aerial photography to identify possible Quaternary faults.

Earthquake seismology – Determine an empirical seismic attenuation function using observations from local seismic networks and recently-installed broad-band stations. Evaluate existing earthquake catalogs from local networks and regional stations, complete the catalogs. Transcribe the pre-1991 network data from 9-track tape onto more stable archival media. Calibrate instruments of local networks. Use GPS measurement to constrain deformation rates used in seismic-hazard maps.

Engineering – Prepare liquefaction susceptibility maps for the urban areas. Update and improve databases for types of site conditions. Collect site effect observations and near-surface geophysical measurements for future local (urban-area) hazard maps. Expand the number of instruments in the strong motion program. Develop fragility curves for Puerto Rico construction types and details, and carry out laboratory testing on selected types of mass-produced construction. Consider tsunami design in shoreline construction projects.

Tsunami hazard - Extract tsunami observations from archives and develop a Caribbean historical tsunami database. Analyze prehistoric tsunami deposits. Collect accurate, up-to-date, near-shore topography and bathymetry for accurate inundation models. Prepare tsunami flooding and evacuation maps. Establish a Caribbean Tsunami Warning System for Puerto Rico and the Virgin Islands. Evaluate local, regional, national, and global seismic networks and equipment, and their role in a tsunami warning system.

Societal concerns – Prepare warning messages, protocols, and evacuation routes for earthquake, tsunami, and landslide hazards for Puerto Rico and the U.S. Virgin Islands. Advocate enforcement of existing building codes. Prepare non-technical hazard assessment maps for political and educational uses. Raise the awareness of potentially affected populations by presentations at elementary schools, by the production of a tsunami video, and by distribution of earthquake preparedness manuals in newspaper supplements. Promote partnerships at state and federal level for long-term earthquake and tsunami hazard mitigation. This partnership should also include the private sector such as the insurance industry, telecommunication companies, and the engineering community.

The following reports of the various working groups are the cumulative recommendations of the community of scientists, engineers, and public officials, who participated in the workshop. The list of participants and the workshop’s agenda are given in the appendix.

  • Marine and Geology and Geophysics Working Group
  • Paleoseismology and Active Faults Working Group
  • Joint Working Group for Earthquake Seismology and Engineering
  • Tsunami Working Group
  • Societal Concerns Working Group
  • Acknowledgements: We thank the president and staff of the Colegio de Ingenieros y Agrimensores de Puerto Rico for graciously hosting this workshop and providing the necessary logistical support, and Fernando Gomez and Milagroz Ortiz of the USGS-WRD office in Guaynabo, Puerto Rico, and Margaret Mons-Wengler of the USGS-Woods Hole Field Center for help with the preparation of the workshop. The workshop was funded by the USGS Coastal and Marine and Earthquake Hazards Programs. Philipp Molzer and Kathryn Scanlon kindly reviewed an earlier version of this report. Donna Newman and Jim Robb edited the final web version.


    Back to Top of Page

    Workshop Home Page


    [an error occurred while processing this directive]