Link to USGS home page
Prepared in cooperation with the Miami-Dade Department of Environmental Resources Management
Correlation Analysis of a Ground-Water Level Monitoring Network, Miami-Dade County, Florida

By Scott T. Prinos

The topic is Coastal Erosion. Open-File Report 2004-1412
Abstract
Introduction
Correlation Analysis of a Ground-Water Level Monitoring Network
Summary
References Cited
Appendixes I & II
image of Duval County, Florida

ABSTRACT

The U.S. Geological Survey cooperative ground-water monitoring program in Miami-Dade County, Florida, expanded from 4 to 98 continuously recording water-level monitoring wells during the 1939-2001 period. Network design was based on area specific assessments; however, no countywide statistical assessments of network coverage had been performed for the purpose of assessing network redundancy.

To aid in the assessment of network redundancy, correlation analyses were performed using S-PLUS 2000 statistical analysis software for daily maximum water-level data from 98 monitoring wells for the November 1, 1973, to October 31, 2000 period. Because of the complexities of the hydrologic, water-supply, and water-management systems in Miami-Dade County and the changes that have occurred to these systems through time, spatial and temporal variations in the degree of correlation had to be considered. To assess temporal variation in correlation, water-level data from each well were subdivided by year and by wet and dry seasons. For each well, year, and season, correlation analyses were performed on the data from those wells that had available data. For selected wells, the resulting correlation coefficients from each year and season were plotted with respect to time. To assess spatial variation in correlation, the coefficients determined from the correlation analysis were averaged. These average wet- and dry-season correlation coefficients were plotted spatially using geographic information system software.

Wells with water-level data that correlated with a coefficient of 0.95 or greater were almost always located in relatively close proximity to each other. Five areas were identified where the water-level data from wells within the area remained correlated with that of other wells in the area during the wet and dry seasons. These areas are located in or near the C-1 and C-102 basins (2 wells), in or near the C-6 and C-7 basins (2 wells), near the Florida Keys Aqueduct Authority Well Field (2 wells), near the Hialeah-Miami Springs Well Field (6 wells), and near the West Well Field (21 wells). Data from the remaining 65 wells (most of the wells in the network) generally were not correlated with those of other wells during both the wet and dry seasons with an average coefficient of 0.95 or greater for the comparison.

Because many of the wells near the West Well Field and some near the Hialeah-Miami Springs Well Field had not been in operation for very long (most having been installed in 1994), the averaged correlation coefficients for these wells were often determined using only a few seasons of data. For the few instances where water-level data were found to be well correlated on average for a lengthy period of record, short-term declines in correlation were often identified. In general, it would be beneficial to compare data for longer periods of record than currently available.

Next:


Figures: Click on a caption to view the figure.
Figure 1. Map showing location of continuous ground-water level monitoring network wells in Miami-Dade County, Florida.

Figure 2. Map showing water-supply and water-management systems in Miami-Dade County.

Figure 3. Maps showing lines of equal rainfall in Miami-Dade County during (a) Hurricane Irene on October 14-16, 1999, and an (b) unnamed storm on October 2-3, 2000.

Figure 4. Graphs showing seasonal variation in mean water levels and variation in monthly standard deviation of mean water levels for wells G-620, G-864, G-1183, and S-18.

Figure 5. Hydrograph showing variation in water levels at wells G-3 and G-1368A along with estimated average daily pumpage based on annual pumpage totals during water years 1974-2000.

Figure 6. Hydrograph showing variation in water level at well G-1502 during water years 1974-2000.

Figure 7. Map showing grouping of wells based on average correlation of water-level data during the wet season.

Figure 8. Map showing grouping of wells based on average correlation of water-level data during the dry season.

Figure 9. Map showing grouping of wells based on average correlation of water-level data during both the wet and dry seasons.

Figure 10. Map showing grouping of wells near the West Well Field based on average correlation of water-level data during both wet and dry seasons.

Figure 11. Graph showing temporal variation in seasonal correlation between water-level data from well G-1487 and that of well G-855 during water years 1974-2000.

Figure 12. Hydrographs showing water-level elevations from wells G-855 and G-1487 during the 1986 and 1998 water years.

Figure 13. Map showing grouping of wells near the Hialeah-Miami Springs Well Field based on average correlation of water-level data during both the wet and dry seasons.

Figure 14. Graph showing temporal variation in seasonal correlation between water-level data from well G-3466 and that of wells G-3465, S-19, and S-68 during water years 1988-2000.

Figure 15. Hydrographs showing water-level elevations from wells G-3465, G-3466, S-19, and S-68 during the 1990 and 1996 water years.

Figure 16. Hydrograph showing water-level elevations from wells G-3465, G-3466, S-19, and S-68 during water years 1988-99.

Figure 17. Graph showing temporal variation in seasonal correlation between censored and uncensored water-level data from well G-3466 and that of wells G-3465, S-19, and S-68 during water years 1988-2000.

Figure 18. Graph showing temporal variation in seasonal correlation between water level data from well G-1362 and that of well G-757A during water years 1974-2000.

Figure 19. Hydrograph showing water-level elevations from wells G-757A and G-1362 during the 1989 and 1997 water years.

Figure 20. Graph showing temporal variation in seasonal correlation between water-level data from well G-864 and that of well G-864A during water years 1974-2000.

Figure 21. Hydrograph showing water-level elevations from wells G-864 and G-864A during the 1990 and 2000 water years.


FirstGov.gov U.S. Department of the Interior | U.S. Geological Survey
Water Resources Discipline, Florida

email Feedback | USGS privacy statement | Accessibility