Reheis, Marith, 1999, Extent of Pleistocene Lakes in the Western Great Basin: USGS Miscellaneous Field Studies Map MF-2323, U.S. Geological Survey, Denver, CO.Online Links:
This is a vector data set. It contains the following vector data types (SDTS terminology):
The map projection used is Lambert Conformal Conic.
Planar coordinates are encoded using Coordinate pair
Abscissae (x-coordinates) are specified to the nearest 130.0
Ordinates (y-coordinates) are specified to the nearest 130.0
Planar coordinates are specified in meters
The horizontal datum used is North American Datum of 1927.
The ellipsoid used is Clarke 1866.
The semi-major axis of the ellipsoid used is 6378206.4.
The flattening of the ellipsoid used is 1/294.98.
late_pl (polygon): Late Pleistocene lake boundaries. FLAG attribute indicates 1=lake present or 0=lake not present. LAKENAME attribute lists lake names. ELEVATION attribute lists lake elevation in meters.
max_pl (polygon): Maximum extent of pre-late Pleistocene lakes. Attribute descriptions are the same as those of late_pl dataset.
add_pl (polygon): Possible additional area of pre-late Pleistocene lakes. FLAG attribute indicates 1=lake present and 0=lake not present.
basin_bnd (line): Boundary of Lahontan basin. No user-defined attributes.
add_basin_bnd (line): Inferred increase of drainage basin area. No user-defined attributes.
flows (line): Lake overflows. FLAG attribute indicates 1=late Plestocene overflow and 2=possible pre-late Pleistocene overflow and modern sill height.
study_sites (point): Field sample sites. DEPOSIT attribute lists types as "pre-late Pleistocene" or "Pliocene."
state_bnd (line): State boundaries. No user-defined attributes.
majdrain (line): Major drainages in basin. No user-defined attributes.
shadebase.tif (TIFF): Georeferenced TIFF file of shaded-relief grid for map base. Produced from DEM grid using the ARC/INFO 'HILLSHADE' command. Georeferencing information is contained in the file shadebase.tfw.
Hemphill-Haley, M. A., 1987, Quaternary stratigraphy and late Holocene faulting along the base of the eastern escarpment of Steens Mountain, southeastern Oregon: M.S. thesis, Arcata, Humboldt State University, 84 p.
Lindberg, D.N., and Hemphill-Haley, M.A., 1988, Late-Pleistocene pluvial history of the Alvord basin, Harney Co., Oregon [abstract]: Northwest Science, v. 62, no. 2, p. 81.
Mifflin, M. D., and Wheat, M. M., 1979, Pluvial lakes and estimated pluvial climates of Nevada: Nevada Bureau of Mines and Geology Bulletin 94, 57 p.
Reheis, M. C., and Morrison, R. B., 1997, High, old pluvial lakes of western Nevada, in Link, P. K., and Kowallis, B. J., eds., Proterozoic to recent stratigraphy, tectonics, and volcanology, Utah, Nevada, southern Idaho and central Mexico: Provo, Brigham Young University Geology Studies, v. 1, p.459-492.
Reheis, M. C., Sarna-Wojcicki, A. M., Reynolds, R. L., Repenning, C. A., and Mifflin, M.D., in press, Pliocene to middle Pleistocene lakes in the western Great Basin: Ages and connections, in Hershler, R., Currey, D., and Madsen, D., eds., Great Basin Aquatic Systems History: Washington D.C., Smithsonian Institution.
Reheis, M.C., Slate, J.L., Sarna-Wojcicki, A.M., and Meyer, C.E., 1993, A late Pliocene to middle Pleistocene pluvial lake in Fish Lake Valley, Nevada and California: Geological Society of American Bulletin, v. 105, p. 959-967.
Stewart, J. H., and Dohrenwend, J. C., 1984, Geologic map of the Wellington quadrangle, Nevada: U.S. Geological Survey Open file Report 84-211, scale 1:62,500.
Weide, D. L., 1975, Postglacial geomorphology and environments of the Warner Valley Hart Mountain area, Oregon: Ph.D. dissertation, Los Angeles, University of California, 293 p.
Production of this map was funded by a Gilbert Fellowship and by the Global Change and Climate History Program.
Marith Reheis
U.S. Geological Survey
Denver Federal Center
Denver, CO 80225-0046
United States
303-236-1270 (voice)
303-236-5349 (FAX)
mreheis@usgs.gov
The purpose of this map is to show the differences between the extents of late Pleistocene pluvial lakes and older, larger lakes caused by much higher effective moisture during past glacial-pluvial episodes.
U.S. Geological Survey, unknown, 1:250,000-scale Digital Elevation Model(DEM).
U.S. Geological Survey, unknown, 1:2,000,000-scale boundary and hydrology Digital Line Graphs.
Attributes within this dataset consist of the names of the lakes only, or flags (0|1) for presence/absence of a lake within a particular polygon. The attribute tables were checked for completeness (i.e. no empty fields), consistency (each "flag" field contains a 0 or 1 only), and for spelling of geographic feature names.
The lake shoreline locations are delineated using contour lines derived from DEM source data with 3 arc-second (nominally 90 meters) grid cell resolution. Horizontal accuracy of DEM data is dependent upon the horizontal spacing of the elevation matrix. Within a standard DEM, most terrain features are generalized by being reduced to grid nodes spaced at regular intersections in the horizontal plane. This generalization reduces the ability to recover positions of specific features less than the internal spacing during testing and results in a de facto filtering or smoothing of the surface during gridding. The broad DMA production objective for a 1-degree DTED-1 is to satisfy an absolute horizontal accuracy (feature to datum) of 130 m, circular error at 90-percent probability. The relative horizontal accuracy (feature to feature on the surface of the elevation model), although not specified, will in many cases conform to the actual hypsographic features with higher integrity than indicated by the absolute accuracy.
The lake elevations were derived from DEM source data with 3 arc-second (nominally 90 meters) grid cell resolution. Vertical accuracy of DEM data is dependent upon the spatial resolution (horizontal grid spacing), quality of the source data, collection and processing procedures, and digitizing systems. Within a standard DEM, most terrain features are generalized by being reduced to grid nodes spaced at regular intersections in the horizontal plane. This generalization reduces the ability to recover positions of specific features less than the internal spacing during testing and results in a de facto filtering or smoothing of the surface during gridding. The broad DMA production objective for a 1-degree DTED-1 is to satisfy an absolute vertical accuracy (feature to mean sea level) of + or - 30 m linear error at 90-percent probability. The relative vertical accuracy (feature to feature on the surface of the elevation model), although not specified, will in many cases conform to the actual hypsographic features with higher integrity than indicated by the absolute accuracy.
Late Pleistocene lake areas are shown for all pluvial lakes within the map area that extend into Nevada or are part of the Lahontan drainage basin. However, larger, pre-late Pleistocene areas are shown only for lake basins which have been visited in the field by the author. The extent of older pluvial lakes in unvisited lake basins is unknown.
Lake areas (late Pleistocene and maximum) are based on shoreline altitudes measured at the field localities shown on map and described in detail in Reheis and Morrison (1997) and Reheis and others (in press). Lake areas were plotted using contour lines of lake-surface altitudes generated from DEMs. Inferred additional area of lakes is approximately delineated based on the author's judgement and is least accurate. Map elements were visually checked for overshoots, undershoots, duplicate features, and other errors.
Are there legal restrictions on access or use of the data?
- Access_Constraints: none
- Use_Constraints: none
U.S.Geological Survey
USGS Information Services
Denver, CO 80225-0046
United States
1-888-ASK-USGS (voice)
MF-2323
none
Available as one printed sheet - order from USGS at the address listed above or see <http://mapping.usgs.gov/esic/order_forms/map_order.html> for more ordering information.
Data format: | Arc/Info Export (.e00), ArcView shapefile (.shp) |
---|---|
Network links: |
<https://pubs.usgs.gov/mf/1999/mf-2323/> |
U.S. Geological Survey
c/o Paco VanSistine
GIS Specialist
Denver Federal Center
Denver, CO 80225-0046
United States
303-236-4610 (voice)
dsistine@usgs.gov