Open-File Report 2011–1112
ABSTRACTThe second groundwater quality study of the Chemung River Basin in south-central New York was conducted as part of the U.S. Geological Survey 305(b) water-quality-monitoring program. Water samples were collected from five production wells and five private residential wells from October through December 2008. The samples were analyzed to characterize the chemical quality of the groundwater. Five of the wells are screened in sand and gravel aquifers, and five are finished in bedrock aquifers. Two of these wells were also sampled for the first Chemung River Basin study of 2003. Samples were analyzed for 6 physical properties and 217 constituents, including nutrients, major inorganic ions, trace elements, radionuclides, pesticides, volatile organic compounds, phenolic compounds, organic carbon, and four types of bacterial analyses. Results of the water-quality analyses for individual wells are presented in tables, and summary statistics for specific constituents are presented by aquifer type. The results are compared with Federal and New York State drinking-water standards, which typically are identical. Water quality in the study area is generally good, but concentrations of some constituents equaled or exceeded current or proposed Federal or New York State drinking-water standards; these were: sodium (one sample), total dissolved solids (one sample), aluminum (one sample), iron (one sample), manganese (four samples), radon-222 (eight samples), trichloroethene (one sample), and bacteria (four samples). The pH of all samples was typically neutral or slightly basic (median 7.5); the median water temperature was 11.0 degrees Celsius (°C). The ions with the highest median concentrations were bicarbonate (median 202 milligrams per liter [mg/L]) and calcium (median 59.0 mg/L). Groundwater in the study area is moderately hard to very hard, but more samples were hard or very hard (121 mg/L as calcium carbonate (CaCO3) or greater) than were moderately hard (61-120 mg/L as CaCO3); the median hardness was 205 mg/L as CaCO3. The maximum concentration of nitrate plus nitrite was 3.67 mg/L as nitrogen, which did not exceed established drinking-water standards for nitrate plus nitrite (10 mg/L as nitrogen). The trace elements with the highest median concentrations were strontium (median 196.5 micrograms per liter [μg/L]), barium (median 186 μg/L), and iron (median 72.5 μg/L in unfiltered water). Five pesticides and pesticide degradates were detected among four samples at concentrations of 0.11 μg/L or less; they included herbicides and herbicide degradates. Six volatile organic compounds (VOCs) were detected among four samples; these included four solvents, methyl tert-butyl ether, and one trihalomethane. Trichloroethene, a solvent, was detected in one production well at 5.5 μg/L; the Federal and New York State Maximum Contaminant Level (MCL) (5 μg/L) was exceeded. The highest radon-222 activities were in samples from bedrock wells [maximum 1,740 picocuries per liter (pCi/L)]; eight of the wells sampled exceeded a proposed U.S. Environmental Protection Agency (USEPA) drinking-water standard of 300 pCi/L. Any detection of coliform bacteria indicates a potential violation of New York State health regulations; total coliform bacteria were detected in four samples, and fecal coliform bacteria were detected in one sample. |
First posted June 7, 2011 For additional information contact: Part or all of this report is presented in Portable Document Format (PDF); the latest version of Adobe Reader or similar software is required to view it. Download the latest version of Adobe Reader, free of charge. |
Risen, A.J., and Reddy, J.E., 2011, Groundwater quality in the Chemung River Basin, New York, 2008: U.S. Geological Survey Open-File Report 2011–1112, 25 p., at https://pubs.usgs.gov/of/2011/1112.
Abstract
Introduction
Purpose and Scope
Study Area
Methods
Groundwater Quality
Physical Properties
Major Ions
Nutrients and Organic Carbon
Trace Elements and Radon-222
Pesticides
Volatile Organic Compounds and Phenolic Compounds
Bacteria
Wells sampled in 2003 and 2008
Summary
References Cited
Appendix