PNG formatted images of mulitchannel boomer seismic-reflection profiles collected by the U.S. Geological Survey in Vineyard Sound, MA, 2011.

Metadata also available as - [Outline] - [Parseable text] - [XML]

Frequently anticipated questions:


What does this data set describe?

Title:
PNG formatted images of mulitchannel boomer seismic-reflection profiles collected by the U.S. Geological Survey in Vineyard Sound, MA, 2011.
Abstract:
These data were collected under a cooperative agreement between the Massachusetts Office of Coastal Zone Management (CZM) and the U.S. Geological Survey (USGS), Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center (WHCMSC). Initiated in 2003, the primary objective of this program is to develop regional geologic framework information for the management of coastal and marine resources. Accurate data and maps of seafloor geology are important first steps toward protecting fish habitat, delineating marine resources, and assessing environmental changes due to natural or human impacts. The project is focused on the inshore waters of coastal Massachusetts, primarily in water depths of 2-30 meters. Data collected for the mapping cooperative have been released in a series of USGS Open-File Reports (<http://woodshole.er.usgs.gov/project-pages/coastal_mass/html/current_map.html>). The data collected in this study area are located in both Buzzards Bay and Vineyard Sound and are primarily in the shallow water areas around the eastern Elizabeth Islands and Martha's Vineyard, Massachusetts. The data include high resolution bathymetry, acoustic-backscatter intensity, sound velocity in water, seismic-reflection profiles, and navigation data. These data were collected during several cruises between 2007 and 2011 onboard the R/V Rafael using the following equipment: an SEA Ltd SwathPlus interferometric sonar (234 kHz), Klein 3000 dual frequency sidescan sonar, a boomer source and Geometrics 8-channel GeoEel streamer, a Knudsen 3200 subbottom profiling system, and 4 GPS antennae. More information about the cruises conducted as part of the project: Geologic Mapping of the Seafloor Offshore of Massachusetts can be found on the Woods Hole Coastal and Marine Science Center Field Activity webpages: <http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2011-013-FA> <http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2009-068-FA> <http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2007-039-FA><http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2010-100-FA><http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2010-047-FA>
  1. How should this data set be cited?

    U.S. Geological Survey, 2013, PNG formatted images of mulitchannel boomer seismic-reflection profiles collected by the U.S. Geological Survey in Vineyard Sound, MA, 2011.: Open-File Report 2013-1020, U.S. Geological Survey, Coastal and Marine Geology Program, Woods Hole Coastal and Marine Science Center, Woods Hole, Massachusetts.

    Online Links:

    This is part of the following larger work.

    Pendleton, Elizabeth A., Andrews, Brian D., Danforth, William W., and Foster, David S., 2013, High-Resolution Geophysical Data From Sand Shoals of Vineyard Sound and the Sea Floor Surrounding the Eastern Elizabeth Islands, Massachusetts: Open-File Report 2013-1020, U.S. Geological Survey, Reston, VA.

    Online Links:

  2. What geographic area does the data set cover?

    West_Bounding_Coordinate: -70.608454
    East_Bounding_Coordinate: -70.882762
    North_Bounding_Coordinate: 41.677964
    South_Bounding_Coordinate: 41.361526

  3. What does it look like?

    <http://pubs.usgs.gov/of/2013/1020/GIS_catalog/seisimage/boomer/2010-100-FA/boomer_100.png> (PNG)
    PNG image of multichannel boomer seismic reflection profile

  4. Does the data set describe conditions during a particular time period?

    Calendar_Date: 06-Jan-2011
    Currentness_Reference: ground condition

  5. What is the general form of this data set?

    Geospatial_Data_Presentation_Form: remote-sensing image

  6. How does the data set represent geographic features?

    1. How are geographic features stored in the data set?

      This is a Raster data set. It contains the following raster data types:

      • Dimensions 3986 x 13636 x 1, type Pixel

    2. What coordinate system is used to represent geographic features?

      Horizontal positions are specified in geographic coordinates, that is, latitude and longitude.

  7. How does the data set describe geographic features?


Who produced the data set?

  1. Who are the originators of the data set? (may include formal authors, digital compilers, and editors)

  2. Who also contributed to the data set?

  3. To whom should users address questions about the data?

    David S. Foster
    U.S. Geological Survey
    Geologist
    384 Woods Hole Road
    Woods Hole, MA 02543-1598
    USA

    508-548-8700 x2271 (voice)
    508-457-2310 (FAX)
    dfoster@usgs.gov


Why was the data set created?

PNG images of each seismic profile were generated in order to incorporate images of the seismic data into Geographic Information System (GIS) projects and data archives. These PNG images represent approximately 21 km of multichannel boomer seismic data collected with a GeoAcoustics boomer source and Geometrics 8-channel GeoEel streamer on January 6, 2011. This format is universal and yields an easily browseable pictorial view of the seismic profiles. Each profile image is hotlinked to its corresponding trackline navigation contained within a polyline shapefile, and even 500 trace locations are available in a point shapefile. All of these data are available in a Esri ArcMap project, as well as separate .zip archives.


How was the data set created?

  1. From what previous works were the data drawn?

    (source 1 of 1)
    U.S. Geological Survey.

    Type_of_Source_Media: online
    Source_Contribution:
    Approximately 21 km of high-resolution multichannel boomer seismic-reflection profiles were collected. The Applied Acoustics boomer source was towed on the starboard side of the RV Rafael, 10 meters aft of the GPS antenna, and was fired at a power level of 100 joules at 1-second intervals with trace lengths of 250 milliseconds. The Geometrics GeoEel, eight-channel liquid filled digital streamer was towed from the port side of the vessel, and the center of the first channel of the active section was 22 meters aft of the boomer source. The streamer had a group interval of 3.125 meters connected to Geometrics Streamer Power Supply Unit (SPSU). Data acquired in Geometrics SEG-D format on Windows PC controller system using Geometrics CNT-1 software. The sample interval was 0.25 ms.

  2. How were the data generated, processed, and modified?

    Date: 20-Jan-2011 (process 1 of 3)
    A SIOSEIS seismic processing software script was used as follows: The raw SEG-D shot files were read with the process SEGDDIN specifying geometrics format; for lines L1 and L2, the process HEADER was used to correct time of day because of random incorrect values of time and position recorded in the header (correct time in the header was needed for the next process); the process GEOM was used to describe the shot and streamer geometries and to calculate the reflection point (CDP) numbers used to gather (sort traces by CDP) the seismic line. Process GEOM was used to set the shot-receiver distance into the trace header of every trace. For lines L1 and L2, GEOM type 6 was specified, which computes a distance from last shot (DFLS) for each shot based on the corrected shot time in the header and the navigation from an ASCII file containing time and position. The ASCII shot navigation file was derived from the HYPACK navigation data. Geom type 9 was specified for line L3, which calculates DFLS based on position in the SEG-D header that was verified to be correct; a normal move out (NMO) applied a travel time correction to each trace based on offset and a velocity of 1500 m/s; process GATHER was used to sort the shot order traces in to traces sorted by the CDP numbers computed by the process GEOM; lastly, the CDP trace gathers were written with the process in SEG-Y rev. 1, IEEE floating point format.

    Person who carried out this activity:

    David S. Foster
    U.S. Geological Survey
    Geologist
    384 Woods Hole Rd
    Woods Hole, MA 02543-1598
    USA

    508-548-8700 x2271 (voice)
    508-457-2310 (FAX)
    dfoster@usgs.gov

    Date: 20-Jan-2011 (process 2 of 3)
    A SIOSEIS script was used to stack the CDP gathers, apply a bandpass filter and automatic gain control. The process DISKIN read the CDP sorted SEG-Y file and renumbered CDP starting at one and incremented CDP number by one. The process STACK was used to sum traces, compute the average amplitude for each trace sample, and write the computed samples to one trace. The trace header values of the first trace in the gather were used for the stacked trace. The process FILTER applied a zero-phase bandpass frequency domain filter between 600 and 2000 Hz with a slope of 48 decibel per octave slope. The process AGC applied an automatic gain control (AGC) with a window length of 5 ms. The computed multiplier for each AGC window was reduced by fifty percent. Lastly, the processed stacked traces were written to disk with the process DISKOX in SEG-Y rev. 1 , IEEE floating point format.

    Person who carried out this activity:

    David S. Foster
    U.S. Geological Survey
    Geologist
    384 Woods Hole Rd.
    Woods Hole, MA 02543-1598

    (508) 548-8700x2271 (voice)
    (508) 457-2310 (FAX)
    dfoster@usgs.gov

    Date: 09-Apr-2013 (process 3 of 3)
    A Seismic Unix (version 4.0) script was used to read the stacked, filtered and gained SEG-Y files and plot the data as 8-bit gray scale Postscript files using the Seismic Unix 'psimage' algorithm. All images were created with a horizontal scale of 60 traces per inch. Images were plotted within a constant 18-inch vertical window of 180 milliseconds (Two-Way Travel Time) duration. The Postscript images were then converted with ImageMagick (version 6.8.7-2) to PNG format at 200 dpi.

    Person who carried out this activity:

    David S. Foster
    U.S. Geological Survey
    Geologist
    384 Woods Hole Road
    Woods Hole, MA 02543-1598
    USA

    508-548-8700 x2271 (voice)
    508-457-2310 (FAX)
    dfoster@usgs.gov

  3. What similar or related data should the user be aware of?

    Andrews, B.D., Ackerman, S.D., Baldwin, W.E., Foster, D.S., and Schwab, W.C., 2013, High-Resolution Geophysical Data From the Inner Continental Shelf at Vineyard Sound, Massachusetts: Open-File Report 2012-1006, U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, Massachusetts.

    Online Links:

    Ackerman, S.D., Andrews, B.D., Foster, D.S., Baldwin, W.E., and Schwab, W.C., 2013, High-Resolution Geophysical Data from the Inner Continental Shelf: Buzzards Bay, Massachusetts: Open-File Report 2012-1002, U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA.

    Online Links:

    Pendleton, E.A., Twichell, D.C., Foster, D.S., Worley, C.R., Irwin, B.J., and Danforth, W.W., 2012, High-Resolution Geophysical Data From the Sea Floor Surrounding the Western Elizabeth Islands, Massachusetts: Open-File Report 2011-1184, U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA.

    Online Links:

    Turecek, A.M., Danforth, W.W., Baldwin, W.E., and Barnhardt, W.A., 2012, High-Resolution Geophysical Data Collected Within Red Brook Harbor, Buzzards Bay, Massachusetts, in 2009: Open-File Report 2010-1091, U.S. Geological Survey, Woods Hole Coastal and Marine Science Center, Woods Hole, MA.

    Online Links:

    Stockwell, John, 2008, CWP/SU: Seismic Uni*x: 43R3, Center for Wave Phenomena - Colorado School of Mines, Golden, CO.

    Online Links:

    Henkart, Paul, 2007, SIOSEIS: Scripps Institution of Oceanography, University of California - San Diego, LaJolla, CA.

    Online Links:

    Norris, Michael W., and Faichney, Alan K., 2002, SEGY Rev.1 Data Exchange Format1: Society of Exploration Geophysicists, Tulsa, OK.

    Online Links:


How reliable are the data; what problems remain in the data set?

  1. How well have the observations been checked?

  2. How accurate are the geographic locations?

    The navigation for these data were acquired with an Communications Systems International (CSI), Inc. LGBX Pro Differential Global Positioning System (DGPS) receiver and an antenna mounted on the cabin of the R/V Rafael. All DGPS data are referenced to WGS 84. The Geometrics CNT-1 acquisition software logged the navigation coordinates (in arc seconds) to individual trace headers. Layback distance between the CSI antenna and the source and receiver were calculated in post processing. The resulting horizontal accuracy is assumed to be +/- 2 m; however, inaccuracies likely exceed this value due to uncertainty of azimuths calculated in the layback correction.

  3. How accurate are the heights or depths?

  4. Where are the gaps in the data? What is missing?

    All boomer lines collected for 2010-100-FA are included in this report

  5. How consistent are the relationships among the observations, including topology?

    Processed seismic data were converted to portable network graphic (PNG) format for ease of seismic trace display. Quality control was conducted during processing. Only 3 lines were collected during this survey. The line naming convention is Lx, where x is the line number from 1 to 3.


How can someone get a copy of the data set?

Are there legal restrictions on access or use of the data?

Access_Constraints: None
Use_Constraints:
Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey as the originator of the dataset.

  1. Who distributes the data set? (Distributor 1 of 1)

    Elizabeth A. Pendleton
    U.S. Geological Survey
    Geologist
    384 Woods Hole Rd.
    Woods Hole, MA 02543-1598

    (508) 548-8700x2259 (voice)
    (508) 457-2310 (FAX)
    ependleton@usgs.gov

  2. What's the catalog number I need to order this data set?

    Downloadable Data

  3. What legal disclaimers am I supposed to read?

    Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the USGS in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  4. How can I download or order the data?

  5. Is there some other way to get the data?

    Digital copies of these boomer seismic data may also be obtained in the SEG-Y Rev. 1 standard format upon request. The data would be packaged on DVD, and contain the stacked traces.

  6. What hardware or software do I need in order to use the data set?

    These data can be viewed with any PNG image viewing software.


Who wrote the metadata?

Dates:
Last modified: 16-Apr-2013
Metadata author:
David S. Foster
U.S. Geological Survey
Geologist
384 Woods Hole Rd.
Woods Hole, MA 02543-1598

(508) 548-8700 x2271 (voice)
(508) 457-2310 (FAX)
dfoster@usgs.gov

Metadata standard:
FGDC Content Standards for Digital Geospatial Metadata (FGDC-STD-001-1998)


Generated by mp version 2.9.21 on Wed Oct 30 15:59:02 2013