Skip Links

USGS - science for a changing world

Open-File Report 2014–1003

Prepared in cooperation with the Rhode Island Water Resources Board

Hydrologic Drought Decision Support System (HyDroDSS)

By Gregory E. Granato

Thumbnail of and link to report PDF (8.32 MB)Abstract

The hydrologic drought decision support system (HyDroDSS) was developed by the U.S. Geological Survey (USGS) in cooperation with the Rhode Island Water Resources Board (RIWRB) for use in the analysis of hydrologic variables that may indicate the risk for streamflows to be below user-defined flow targets at a designated site of interest, which is defined herein as data-collection site on a stream that may be adversely affected by pumping. Hydrologic drought is defined for this study as a period of lower than normal streamflows caused by precipitation deficits and (or) water withdrawals. The HyDroDSS is designed to provide water managers with risk-based information for balancing water-supply needs and aquatic-habitat protection goals to mitigate potential effects of hydrologic drought.

This report describes the theory and methods for retrospective streamflow-depletion analysis, rank correlation analysis, and drought-projection analysis. All three methods are designed to inform decisions made by drought steering committees and decisionmakers on the basis of quantitative risk assessment. All three methods use estimates of unaltered streamflow, which is the measured or modeled flow without major withdrawals or discharges, to approximate a natural low-flow regime.
Retrospective streamflow-depletion analysis can be used by water-resource managers to evaluate relations between withdrawal plans and the potential effects of withdrawal plans on streams at one or more sites of interest in an area. Retrospective streamflow-depletion analysis indicates the historical risk of being below user-defined flow targets if different pumping plans were implemented for the period of record. Retrospective streamflow-depletion analysis also indicates the risk for creating hydrologic drought conditions caused by use of a pumping plan. Retrospective streamflow-depletion analysis is done by calculating the net streamflow depletions from withdrawals and discharges and applying these depletions to a simulated record of unaltered streamflow.

Rank correlation analysis in the HyDroDSS indicates the persistence of hydrologic measurements from month to month for the prediction of developing hydrologic drought conditions and quantitatively indicates which hydrologic variables may be used to indicate the onset of hydrologic drought conditions. Rank correlation analysis also indicates the potential use of each variable for estimating the monthly minimum unaltered flow at a site of interest for use in the drought-projection analysis. Rank correlation analysis in the HyDroDSS is done by calculating Spearman’s rho for paired samples and the 95-percent confidence limits of this rho value. Rank correlation analysis can be done by using precipitation, groundwater levels, measured streamflows, and estimated unaltered streamflows. Serial correlation analysis, which indicates relations between current and future values, can be done for a single site. Cross correlation analysis, which indicates relations among current values at one site and current and future values at a second site, also can be done.

Drought-projection analysis in the HyDroDSS indicates the risk for being in a hydrologic drought condition during the current month and the five following months with and without pumping. Drought-projection analysis also indicates the potential effectiveness of water-conservation methods for mitigating the effect of withdrawals in the coming months on the basis of the amount of depletion caused by different pumping plans and on the risk of unaltered flows being below streamflow targets. Drought-projection analysis in the HyDroDSS is done with Monte Carlo methods by using the position analysis method. In this method the initial value of estimated unaltered streamflows is calculated by correlation to a measured hydrologic variable (monthly precipitation, groundwater levels, or streamflows from an index station identified with the rank correlation analysis). Then a pseudorandom number generator is used to create 251 six-month-long flow traces by using a bootstrap method. Serial correlation of the estimated unaltered monthly minimum streamflows determined from the rank correlation analysis is preserved within each flow trace. The sample of unaltered streamflows indicates the risk of being below flow targets in the coming months under simulated natural conditions (without historic withdrawals). The streamflow-depletion algorithms are then used to estimate risks of flow being below targets if selected pumping plans are used.

This report also describes the implementation of the HyDroDSS. The HyDroDSS was developed as a Microsoft Access® database application to facilitate storage, handling, and use of hydrologic datasets with a simple graphical user interface. The program is implemented in the database by using the Visual Basic for Applications® (VBA) programming language. Program source code for the analytical techniques is provided in the HyDroDSS and in electronic text files accompanying this report. Program source code for the graphical user interface and for data-handling code, which is specific to Microsoft Access® and the HyDroDSS, is provided in the database. An installation package with a run-time version of the software is available with this report for potential users who do not have a compatible copy of Microsoft Access®. Administrative rights are needed to install this version of the HyDroDSS.

A case study, to demonstrate the use of HyDroDSS and interpretation of results for a site of interest, is detailed for the USGS streamgage on the Hunt River (station 01117000) near East Greenwich in central Rhode Island. The Hunt River streamgage was used because it has a long record of streamflow and is in a well-studied basin with a substantial amount of hydrologic and water-use data including groundwater pumping for municipal water supply.

First posted March 27, 2014

  • Make CD by ISO package (92 MB)
    Version 1.0.0 of the HyDroDSS software is available on a virtual CD-ROM that also includes a copy of the report with an appendix, a model-installation package, model source files, example spreadsheets, the CalcDeplete program, the CD-ROM disk label, and the CD-ROM door card. The virtual CD-ROM is recorded in standard ISO image (.iso) format that can be used to manufacture a physical CD-ROM on your computer by using typical disc recording software included with most computers.

For additional information, contact:
Office Chief, New England Water Science Center
U.S. Geological Survey
Massachusetts-Rhode Island Office
10 Bearfoot Road
Northborough, MA 01532
(508) 490-5000
http://ma.water.usgs.gov
http://ri.water.usgs.gov

Part or all of this report is presented in Portable Document Format (PDF). For best results viewing and printing PDF documents, it is recommended that you download the documents to your computer and open them with Adobe Reader. PDF documents opened from your browser may not display or print as intended. Download the latest version of Adobe Reader, free of charge.


Suggested citation:

Granato, G.E., 2014, Hydrologic Drought Decision Support System (HyDroDSS): U.S. Geological Survey Open-File Report 2014–1003, 91 p., with CD–ROM, https://dx.doi.org/10.3133/ofr20141003.

ISSN 2331-1258 (online)



Contents

Acknowledgments

Abstract

Introduction

Theory and Implementation

Use of the HydroDSS Graphical User Interface

Case Study—Streamgage 01117000 Hunt River near East Greenwich, Rhode Island

Summary

References Cited


Accessibility FOIA Privacy Policies and Notices

USA.gov logo U.S. Department of the Interior | U.S. Geological Survey
URL: https://pubs.usgs.gov/of/2014/1003/
Page Contact Information: Contact USGS
Page Last Modified: Wednesday, December 07, 2016, 07:35:13 PM