Sediment-Texture Units of the Sea Floor for Vineyard and western Nantucket Sounds, Massachusetts (polygon shapefile, Geographic, WGS84)
Metadata also available as - [Questions & Answers] - [Parseable text] - [XML]
Metadata:
- Identification_Information:
-
- Citation:
-
- Citation_Information:
-
- Originator: Wayne Baldwin
- Publication_Date: 2016
- Title:
-
Sediment-Texture Units of the Sea Floor for Vineyard and western Nantucket Sounds, Massachusetts (polygon shapefile, Geographic, WGS84)
- Edition: 1
- Geospatial_Data_Presentation_Form: vector digital data
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2016-1119
- Publication_Information:
-
- Publication_Place: Woods Hole Coastal and Marine Science Center, Woods Hole, MA
- Publisher: U.S. Geological Survey, Coastal and Marine Geology Program
- Online_Linkage:
-
<http://pubs.usgs.gov/of/2016/1119/GIS_catalog/SedimentTexture/VineyardNantucketSound_sedcover.zip>
- Larger_Work_Citation:
-
- Citation_Information:
-
- Originator: Wayne E. Baldwin
- Originator: David S. Foster
- Originator: Elizabeth A. Pendleton
- Originator: Walter A. Barnhardt
- Originator: William C. Schwab
- Originator: Brian D. Andrews
- Originator: Seth D. Ackerman
- Publication_Date: 2016
- Title:
-
Shallow Geology, Sea-Floor Texture, and Physiographic Zones of Vineyard and western Nantucket Sounds, Massachusetts
- Edition: 1
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2016-1119
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2016/1119/>
- Description:
-
- Abstract:
-
Geologic, sediment texture, and physiographic zone maps characterize the sea floor of Vineyard and western Nantucket Sounds, Massachusetts. These maps were derived from interpretations of seismic-reflection profiles, high-resolution bathymetry, acoustic-backscatter intensity, bottom photographs, and surficial sediment samples. The interpretation of the seismic stratigraphy and mapping of glacial and Holocene marine units provided a foundation on which the surficial maps were created. This mapping is a result of a collaborative effort between the U.S. Geological Survey and the Massachusetts Office of Coastal Zone Management to characterize the surface and subsurface geologic framework offshore of Massachusetts.
- Purpose:
-
These sea floor sediment cover data were created from geophysical and sample data collected from Vineyard and western Nantucket Sounds, and are used to characterize the sea floor in the area. Sediment type and distribution maps are important data layers for marine resource managers charged with protecting fish habitat, delineating marine boundaries, and assessing environmental change due to natural or human impacts.
- Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20010905
- Ending_Date: 20110831
- Currentness_Reference:
-
ground condition of the source data that this interpretation is based on
- Status:
-
- Progress: Complete
- Maintenance_and_Update_Frequency: None planned
- Spatial_Domain:
-
- Bounding_Coordinates:
-
- West_Bounding_Coordinate: -71.029685
- East_Bounding_Coordinate: -70.430489
- North_Bounding_Coordinate: 41.561614
- South_Bounding_Coordinate: 41.320506
- Keywords:
-
- Theme:
-
- Theme_Keyword_Thesaurus: None
- Theme_Keyword: U.S. Geological Survey
- Theme_Keyword: USGS
- Theme_Keyword: Coastal and Marine Geology Program
- Theme_Keyword: CMGP
- Theme_Keyword: Woods Hole Coastal and Marine Science Center
- Theme_Keyword: WHCMSC
- Theme_Keyword: Massachusetts Office of Coastal Zone Management
- Theme_Keyword: CZM
- Theme_Keyword: Sea floor
- Theme_Keyword: Marine Geology
- Theme_Keyword: Interpretation
- Theme_Keyword: Bathymetry
- Theme_Keyword: Backscatter
- Theme_Keyword: Slope
- Theme_Keyword: Topography
- Theme_Keyword: Esri Shapefile
- Theme_Keyword: Bottom type
- Theme_Keyword: Sediment Cover
- Theme_Keyword: Sediment Texture
- Theme_Keyword: Sediment Distribution
- Theme_Keyword: Bottom Photographs
- Theme_Keyword: Sediment Samples
- Theme_Keyword: Seismic-reflection Profiles
- Theme:
-
- Theme_Keyword_Thesaurus: ISO keywords
- Theme_Keyword: oceans
- Place:
-
- Place_Keyword_Thesaurus: None
- Place_Keyword: Vineyard Sound
- Place_Keyword: Nantucket Sound
- Place_Keyword: Atlantic Ocean
- Place_Keyword: Cape Cod
- Place_Keyword: Succonnesset Point
- Place_Keyword: Falmouth
- Place_Keyword: Woods Hole
- Place_Keyword: Gosnold
- Place_Keyword: Elizabeth Islands
- Place_Keyword: Nonamesset Island
- Place_Keyword: Naushon Island
- Place_Keyword: Pasque Island
- Place_Keyword: Nashawena Island
- Place_Keyword: Cuttyhunk Island
- Place_Keyword: Martha's Vineyard
- Place_Keyword: Aquinnah
- Place_Keyword: Menemsha
- Place_Keyword: Vineyard Haven
- Place_Keyword: Oak Bluffs
- Place_Keyword: Edgartown
- Place_Keyword: Cape Poge
- Place_Keyword: Lucas Shoal
- Place_Keyword: Middle Ground Shoal
- Place_Keyword: L'Hommedieu Shoal
- Place_Keyword: Succonnesset Shoal
- Place_Keyword: Hedge Fence Shoal
- Place_Keyword: Squash Meadow Shoal
- Stratum:
-
- Stratum_Keyword_Thesaurus: None
- Stratum_Keyword: Sea floor
- Access_Constraints: None
- Use_Constraints:
-
Not to be used for navigation. Public domain data from the U.S. Government are freely redistributable with proper metadata and source attribution. Please recognize the U.S. Geological Survey (USGS) as the source of this information.
Additionally, there are limitations associated with qualitative sediment mapping interpretations. Because of the scale of the source geophysical data and the spacing of samples, not all changes in sea floor texture are captured. The data were mapped between 1:5,000 and 1:20,000, but the recommended scale for application of these data is 1:25,000.
- Point_of_Contact:
-
- Contact_Information:
-
- Contact_Person_Primary:
-
- Contact_Person: Wayne Baldwin
- Contact_Organization: U.S. Geological Survey
- Contact_Position: Geologist
- Contact_Address:
-
- Address_Type: mailing and physical address
- Address: U.S. Geological Survey
- Address: 384 Woods Hole Road
- City: Woods Hole
- State_or_Province: MA
- Postal_Code: 02543-1598
- Country: USA
- Contact_Voice_Telephone: 508-548-8700 x2226
- Contact_Facsimile_Telephone: 508-457-2310
- Contact_Electronic_Mail_Address: wbaldwin@usgs.gov
- Browse_Graphic:
-
- Browse_Graphic_File_Name:
-
<http://pubs.usgs.gov/of/2016/1119/GIS_catalog/SedimentTexture/VineyardNantucketSound_sedcover.png>
- Browse_Graphic_File_Description:
-
Image of the sediment texture and distribution shapefile for Vineyard and western Nantucket Sounds
- Browse_Graphic_File_Type: PNG
- Native_Data_Set_Environment: ESRI ArcCatalog 9.3.1.4095
- Cross_Reference:
-
- Citation_Information:
-
- Originator: Kelley, J.T.
- Originator: Barnhardt, W.A.
- Originator: Belknap, D.F.
- Originator: Dickson, S.M.
- Originator: Kelley, A.R.
- Publication_Date: 1998
- Title:
-
The Seafloor Revealed: The Geology of the Northwestern Gulf of Maine Inner Continental Shelf
- Edition: 1.0
- Geospatial_Data_Presentation_Form: document
- Series_Information:
-
- Series_Name: Maine Geological Survey Open-File Report
- Issue_Identification: 96-6
- Publication_Information:
-
- Publication_Place: Augusta, Maine
- Publisher:
-
Maine Geological Survey, Natural Resources Information and Mapping Center
- Online_Linkage: <http://www.maine.gov/dacf/mgs/explore/marine/seafloor/96-6.pdf>
- Cross_Reference:
-
- Citation_Information:
-
- Originator: Barnhardt, W.A.
- Originator: Kelley, J.T.
- Originator: Dickson, S.M.
- Originator: Belknap, D.F.
- Publication_Date: 1998
- Title:
-
Mapping the Gulf of Maine with Side-scan Sonar: a New Bottom-type Classification for Complex Seafloors
- Edition: 1.0
- Geospatial_Data_Presentation_Form: document
- Series_Information:
-
- Series_Name: Journal of Coastal Research
- Issue_Identification: 14(2)
- Publication_Information:
-
- Publication_Place: Royal Palm Beach, FL
- Publisher: Coastal Education and Research Foundation, Inc.
- Cross_Reference:
-
- Citation_Information:
-
- Originator: McMullen, K.Y.
- Originator: Paskevich, V.F.
- Originator: Poppe, L.J.
- Publication_Date: 2011
- Title:
-
GIS data catalog (version 2.2), in Poppe, L.J., Williams, S.J., and Paskevich, V.F., eds., 2005, USGS East-coast Sediment Analysis: Procedures, Database, and GIS Data
- Edition: 2.2
- Geospatial_Data_Presentation_Form: tabular digital data
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2005-1001
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2005/1001/htmldocs/datacatalog.htm>
- Cross_Reference:
-
- Citation_Information:
-
- Originator: Ford, K.H.
- Originator: Voss, S.E
- Publication_Date: 2010
- Title:
-
Seafloor Sediment Composition in Massachusetts Determined Using Point Data
- Edition: 1.0
- Geospatial_Data_Presentation_Form: document
- Series_Information:
-
- Series_Name: Massachusetts Division of Marine Fisheries Technical Report
- Issue_Identification: TR-45
- Publication_Information:
-
- Publication_Place: New Bedford, MA
- Publisher: Massachusetts Division of Marine Fisheries
- Online_Linkage: <http://www.mass.gov/eea/docs/dfg/dmf/publications/tr-45.pdf>
- Data_Quality_Information:
-
- Logical_Consistency_Report:
-
These data were drawn and vetted for accuracy using the source input rasters and point sample data described in the processing steps and source contributions. Overlapping features and unintentional gaps within the survey area were identified using the topology checker in ArcMap (version 9.3.1) and corrected or removed.
Not all digitized sea floor features contained sample information, so often the sea floor texture is characterized by the nearest similar feature that contains a sample. Conversely, sometimes a digitized feature contained multiple samples and not all of the samples within the feature were in agreement (of the same texture). In these cases all data were considered, and the dominant sediment texture from sample analyses did not necessarily determine the primary texture assigned to a polygon. Samples from rocky areas often only consist of bottom photographs, because large particle size often prevents the recovery of a sediment sample. Bottom photo classification can be subjective, such that determining the sediment type that is greater than 50% of the view frame is estimated by the interpreter and may differ among interpreters. Bottom photo transects often reveal changes in the sea floor over distances of less than 100 m and these changes are often not observable in acoustic data. Heterogeneous sea floor texture can change very quickly, and many small-scale changes will not be detectable or mappable at a scale of 1:25,000. The boundaries of polygons are often inferred on the basis of sediment samples, and even boundaries that are traced on the basis of amplitude changes in geophysical data are subject to migration. Polygon boundaries should be considered an approximation of the location of a change in texture.
- Completeness_Report:
-
These sediment cover data are defined for areas where source data exists. In general, gaps in the coverage coincide with gaps in the source data. However, some small data gaps were interpreted through extrapolation. Areas of lower data quality and incomplete coverage are noted in a data confidence attribute field.
- Positional_Accuracy:
-
- Horizontal_Positional_Accuracy:
-
- Horizontal_Positional_Accuracy_Report:
-
These data were produced qualitatively from acoustic and sample data with varying resolutions. Horizontal uncertainty associated with sample collection especially, can be quite high (100's of meters), much higher than positional uncertainty associated with acoustic data (usually less than <10's of meters). The date of sample collection and ship station positioning all contribute to sample position uncertainty. These qualitatively derived polygons outlining sea floor features are estimated to be within 50 meters, horizontally, but locally may be higher when sediment texture delineation is based on sample information alone.
- Vertical_Positional_Accuracy:
-
- Vertical_Positional_Accuracy_Report:
-
Although there is a field for mean water depth, there is no assumption of vertical accuracy. The depth value is an average of all grid cells of the regional bathymetric DEM (see vns10m_navd88 in the larger work citation) within each polygon. In many cases the mean depth value covers a range of depths from near zero to < -20 meters, and as such should not be used for navigation or taken as an absolute depth value within a polygon.
- Lineage:
-
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Poppe, L.J.
- Originator: Ackerman, S.D.
- Originator: Foster, D.S.
- Originator: Blackwood, D.S.
- Originator: Butman, B.
- Originator: Moser, M.S.
- Originator: Stewart, H.F.
- Publication_Date: 2007
- Title:
-
Sea-floor character and surface processes in the vicinity of Quicks Hole, Elizabeth Islands, Massachusetts
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2006-1357
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2006/1357/>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20040810
- Ending_Date: 20050617
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: Poppe and others, 2007
- Source_Contribution:
-
This publication provides the source geophysical data (backscatter and bathymetry) and bottom photographs and sediment samples for the Quicks Hole area. Two 29-foot launches deployed from the NOAA Ship Thomas Jefferson were used to acquire bathymetric and backscatter data during 2004. The multibeam bathymetric data were collected with hull-mounted 455-kHz RESON 8125 and 240-kHz RESON 8101 systems. The sidescan-sonar data were acquired with a hull-mounted Klein 5250 system operating at 100 kHz. Sediment samples and bottom photos were collected aboard the R/V Rafael with a modified Van Veen grab sampler and SEABOSS, respectively.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Poppe, L.J.
- Originator: McMullen, K.Y.
- Originator: Foster, D.S.
- Originator: Blackwood, D.S.
- Originator: Williams, S.J.
- Originator: Ackerman, S.D.
- Originator: Moser, M.S.
- Originator: Glomb, K.A.
- Publication_Date: 2010
- Title:
-
Geological interpretation of the sea floor offshore of Edgartown, Massachusetts
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2009-1001
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2009/1001/>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20040814
- Ending_Date: 20080909
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: Poppe and others, 2010
- Source_Contribution:
-
This publication provides the source geophysical (backscatter and bathymetry) and bottom photographs and sediment samples in the vicinity of Edgartown. Two 29-foot launches deployed from the NOAA Ship Thomas Jefferson were used to acquire bathymetric and backscatter data during 2004. The multibeam bathymetric data were collected with hull-mounted 455-kHz RESON 8125 and 240-kHz RESON 8101 systems. The sidescan-sonar data were acquired with a hull-mounted Klein 5250 system operating at 100 kHz. Sediment samples and bottom photos were collected aboard the R/V Rafael with a modified Van Veen grab sampler and SEABOSS, respectively.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Pendleton, E.A.
- Originator: Twichell, D.C.
- Originator: Foster, D.S.
- Originator: Worley, C.R
- Originator: Irwin, B.J.
- Originator: Danforth, W.W.
- Publication_Date: 2012
- Title:
-
High-resolution geophysical data from the sea floor surrounding the Western Elizabeth Islands, Massachusetts
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2011-1184
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2011/1184/>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20100909
- Ending_Date: 20100918
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: Pendleton and others, 2012
- Source_Contribution:
-
This report provided source geophysical data (sidescan, bathymetry, and seismic-reflection profiles) for portions of Vineyard Sound adjacent to the western Elizabeth Islands. Surveying was conducted aboard the RV Rafael in September 2010. Interferometric-sonar, sidescan-sonar, and chirp seismic-reflection systems were deployed simultaneously during the cruise. Bathymetric sounding data were collected with an SEA SWATHplus 234-kilohertz (kHz) interferometric sonar system. Sidescan-sonar (acoustic-backscatter) data were acquired with a Klein 3000 dual-frequency (100 and 500 kHz) sidescan-sonar system. High-resolution chirp seismic-reflection profiles were collected using an EdgeTech Geo-Star full spectrum sub-bottom (FSSB) system and SB-424 towfish.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Andrews, B.D.
- Originator: Ackerman, S.D.
- Originator: Baldwin, W.E.
- Originator: Foster, D.S.
- Originator: Schwab, W.C.
- Publication_Date: 2014
- Title:
-
High-Resolution Geophysical Data from the Inner Continental Shelf at Vineyard Sound, Massachusetts
- Edition: 2
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2012-1006
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2012/1006/>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20090528
- Ending_Date: 20110517
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: Andrews and others, 2014
- Source_Contribution:
-
This report provided the source geophysical data (sidescan, bathymetry, and seismic-reflection profiles) for Vineyard and western Nantucket Sounds. The mapping was conducted during research cruises aboard the Megan T. Miller (2009 and 2010) and the Scarlett Isabella (2011). Bathymetric data were acquired using a Systems Engineering and Assessment, Ltd. (SEA) SWATHplus-M 234-kilohertz (kHz) interferometric sonar system, acoustic backscatter data were collected with a Klein 3000 dual-frequency sidescan-sonar (132 and 445 kHz), and chirp seismic-reflection data were collected using an EdgeTech Geo-Star FSSB subbottom profiling system and an SB-0512i towfish.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Pendleton, E.A.
- Originator: Andrews, B.D.
- Originator: Danforth, W.W.
- Originator: Foster, D.S.
- Publication_Date: 2014
- Title:
-
High-resolution geophysical data collected aboard the U.S. Geological Survey research vessel Rafael to supplement existing datasets from Buzzards Bay and Vineyard Sound, Massachusetts
- Series_Information:
-
- Series_Name: Open-File Report
- Issue_Identification: 2013-1020
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2013/1020/>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20071005
- Ending_Date: 20110413
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: Pendleton and others, 2014
- Source_Contribution:
-
This report provided the source geophysical data (sidescan, bathymetry, and seismic-reflection profiles) for central portions of Vineyard and western Nantucket Sounds. These areas were surveyed with the RV Rafael in 2010 and 2011. In 2010, seismic-reflection data were acquired with a boomer source and GeoEel 8-channel streamer. Interferometric-sonar, sidescan-sonar, and Knudsen seismic-reflection systems were deployed simultaneously during cruise 2011. Bathymetry data were collected with an SEA SWATHplus 234-kilohertz (kHz) interferometric sonar, Sidescan-sonar (acoustic-backscatter) data were acquired with a Klein 3000 dual-frequency (100 and 500 kHz) sidescan sonar, and high-resolution chirp seismic data were collected using a dual frequency (3.5 and 200 kHz) Knudsen Engineering Limited (KEL) Chirp 3202 system.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Ford, K.H.
- Originator: Huntley, E.C.
- Originator: Sampson, D.W.
- Originator: Voss, S.
- Publication_Date: Unpublished Material
- Title: Massachusetts Sediment Database
- Geospatial_Data_Presentation_Form: vector digital data
- Other_Citation_Details:
-
This sample database has been compiled and vetted from existing samples and datasets by the Massachusetts Office of Coastal Zone Management. The data are currently unpublished, but may be acquired by contacting the CZM office:
251 Causeway St Boston, MA 02114
(617) 626-1000
czm@state.ma.us
- Type_of_Source_Media: digital vector
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 19950101
- Ending_Date: 20110101
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: CZM sample database
- Source_Contribution:
-
Sediment sample databases of Ford and Voss (2010) and McMullen and others (2011) were combined then edited and supplemented with NOAA chart sampling data and bottom photos and descriptions by a group of GIS specialists at the Massachusetts Office of Coastal Zone Management (Emily Huntley, personal communication). These data contained sediment laboratory statistics when available, visual descriptions if sediment analysis was not performed or if the site was a bottom photograph, and classification fields of Barnhardt and others (1998), Shepard (1954), and Wentworth (1922) as well as average sediment statistics and phi size, when laboratory analysis was conducted.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Poppe, L.J.
- Originator: McMullen, K.Y.
- Originator: Foster, D.S.
- Originator: Blackwood, D.S.
- Originator: Williams, S.J.
- Originator: Ackerman, S.D.
- Originator: Barnum, S.R.
- Originator: Brennan, R.T.
- Publication_Date: 2008
- Title:
-
Sea-floor character and sedimentary processes in the vicinity of Woods Hole, Massachusetts
- Edition: 1.0
- Geospatial_Data_Presentation_Form: raster digital data
- Series_Information:
-
- Series_Name: Open File Report
- Issue_Identification: 2008-1004
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2008/1004/>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20010905
- Ending_Date: 20071119
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: Poppe and others, 2008
- Source_Contribution:
-
This publication provides the source geophysical data (backscatter and bathymetry) and bottom photographs and sediment samples for Woods Hole. Two 29-foot launches deployed from the NOAA Ship Whiting were used to acquire bathymetric and backscatter data during 2001. The bathymetric data were collected with a hull-mounted 240-kHz RESON 8101 shallow-water system aboard launch 1005. The sidescan-sonar data were acquired with a hull-mounted Klein T-5000 system operating at 455 kHz aboard launch 1014. Sediment samples and bottom photos were collected aboard the R/V Rafael with a modified Van Veen grab sampler and SEABOSS, respectively, in 2007.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: Ackerman, S.D.
- Originator: Pappal, A.L.
- Originator: Huntley, E.C.
- Originator: Blackwood, D.S.
- Originator: Schwab, W.C.
- Publication_Date: 2015
- Title:
-
Geological Sampling Data and Benthic Biota Classification: Buzzards Bay and Vineyard Sound, Massachusetts
- Geospatial_Data_Presentation_Form: document
- Series_Information:
-
- Series_Name: Open file Report
- Issue_Identification: 2014-1221
- Publication_Information:
-
- Publication_Place: Reston, VA
- Publisher: U.S. Geological Survey
- Online_Linkage: <http://pubs.usgs.gov/of/2014/1221>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20100909
- Ending_Date: 20110914
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: Ackerman and others, 2014
- Source_Contribution:
-
This report provided high-resolution digital photographs of the Vineyard Sound and Buzzards Bay Seafloor. At each station, the USGS SEABOSS was towed approximately one meter off the bottom at speeds of less than one knot. Because the recorded position is actually the position of the GPS antenna on the survey vessel, not the SEABOSS sampler, the estimated horizontal accuracy of the sample location is ± 30 meters (m). Photographs were obtained using a Konica-Minolta DiMAGE A2 digital still camera, and continuous video was collected from a Kongsberg Simrad OE1365 high-resolution color video camera, usually for 5 to 15 minutes. These data were important in defining rocky zones where sediment samples do not exist.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator:
-
U.S. Army Corps of Engineers - Joint Airborne Lidar Bathymetry Center of Expertise
- Publication_Date: 2009
- Title:
-
2005 - 2007 US Army Corps of Engineers (USACE) Topo/Bathy Lidar: Maine, Massachusetts, and Rhode Island
- Geospatial_Data_Presentation_Form: digital point data
- Publication_Information:
-
- Publication_Place: Charleston, SC
- Publisher:
-
NOAA National Ocean Service (NOS), Coastal Services Center (CSC)
- Online_Linkage:
-
<http://coast.noaa.gov/dataviewer/index.html?action=advsearch&qType=in&qFld=ID&qVal=116>
- Online_Linkage:
-
<ftp://coast.noaa.gov/pub/DigitalCoast/lidar1_z/geoid12a/data/116>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20070527
- Ending_Date: 20070527
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: USACE-JALBTCX, 2009
- Source_Contribution:
-
The source lidar data for the very nearshore (< -5 m) region along the northern shoreline of Vineyard and western Nantucket Sounds. Lidar (Light Detection and Ranging) data were acquired with a SHOALS-1000T (for hydrographic & topographic data) using the Joint Airborne Joint Airborne LiDAR Bathymetry Center of Expertise (JALBTCX) lidar plane. These data are now publically available in LAS lidar format via NOAA's Digital Coast website.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: National Oceanic and Atmospheric Administration
- Publication_Date: 2008
- Title:
-
Descriptive report, navigable area survey H11920, Vineyard Sound, Massachusetts, Gay Head to Cedar Tree Neck
- Geospatial_Data_Presentation_Form: BAG files
- Publication_Information:
-
- Publication_Place: Norfolk, VA
- Publisher:
-
National Oceanographic and Atmospheric Administration - National Ocean Survey
- Online_Linkage:
-
<http://surveys.ngdc.noaa.gov/mgg/NOS/coast/H10001-H12000/H11920/>
- Online_Linkage:
-
<http://surveys.ngdc.noaa.gov/mgg/NOS/coast/H10001-H12000/H11920/DR/H11920.pdf>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20080715
- Ending_Date: 20080908
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: NOAA, 2008
- Source_Contribution:
-
The Bathymetry Attributed Grid (BAG) files accompanying this publication provide the source bathymetry data for portions of Vineyard Sound around the Menemsha Bight. Two 29-foot launches deployed from the NOAA Ship Thomas Jefferson were used to acquire bathymetry during 2008 using hull-mounted 455-kHz RESON 8125 and 240-kHz RESON 8101 systems.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: National Oceanic and Atmospheric Administration
- Publication_Date: 2008
- Title:
-
Descriptive report, navigable area survey H11921, Vineyard Sound, Massachusetts, Sow and Pigs reef to Quicks Hole
- Geospatial_Data_Presentation_Form: BAG and TIFF files
- Publication_Information:
-
- Publication_Place: Norfolk, VA
- Publisher:
-
National Oceanographic and Atmospheric Administration - National Ocean Survey
- Online_Linkage:
-
<http://surveys.ngdc.noaa.gov/mgg/NOS/coast/H10001-H12000/H11921/>
- Online_Linkage:
-
<http://surveys.ngdc.noaa.gov/mgg/NOS/coast/H10001-H12000/H11921/DR/H11921.pdf>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 20080806
- Ending_Date: 20080908
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: NOAA, 2008
- Source_Contribution:
-
The BAG and TIFF files accompanying this publication provide the source geophysical data (backscatter and bathymetry) for portions of Vineyard Sound around Cuttyhunk Island and Quicks Hole. Two 29-foot launches deployed from the NOAA Ship Thomas Jefferson were used to acquire bathymetric and backscatter data during 2008. The multibeam bathymetric data were collected with hull-mounted 455-kHz RESON 8125 and 240-kHz RESON 8101 systems. The sidescan-sonar data were acquired with a hull-mounted Klein 5250 system operating at 100 kHz.
- Source_Information:
-
- Source_Citation:
-
- Citation_Information:
-
- Originator: NOAA National Geophysical Data Center
- Publication_Date: 2015
- Title: NOS Hydrographic Survey Data
- Geospatial_Data_Presentation_Form: tabular digital data
- Online_Linkage: <http://ngdc.noaa.gov/mgg/bathymetry/hydro.html>
- Type_of_Source_Media: online
- Source_Time_Period_of_Content:
-
- Time_Period_Information:
-
- Range_of_Dates/Times:
-
- Beginning_Date: 1938
- Ending_Date: 1977
- Source_Currentness_Reference: ground condition
- Source_Citation_Abbreviation: NOAA Single-Beam Soundings
- Source_Contribution:
-
These data include NOAA lead-line and single-beam sonar soundings, which were used to cover areas where no swath bathymetry or lidar data exist.
- Process_Step:
-
- Process_Description:
-
The texture and spatial distribution of sea-floor sediment were qualitatively analyzed in ArcGIS using several input data sources (listed in the source contribution), including acoustic backscatter, bathymetry, seismic-reflection profile interpretations, bottom photographs, and sediment samples. The interpretation was initiated by digitizing a polygon shapefile (file > new > shapefile in ArcCatalog 9.3.1, then editor > 'create new feature' in ArcMap 9.3.1) around the extent of the regional bathymetric DEM (see vns10m_navd88 in the larger work citation). The polygon was then partitioned into multiple sediment texture polygons using 'cut polygon' and 'auto-complete polygon' in an edit session. In general, polygon editing was done at scales between 1:5,000 and 1:20,000, depending on the size of the traced feature and the resolution of the source data. Some areas interpreted as a single sediment textural unit may contain multiple polygons that indicate different interpretation confidence levels. The following numbered steps outline the workflow of the data interpretation.
1. Backscatter intensity data (available at 1 m resolution) was the first input. Changes in backscatter amplitude were digitized to outline possible changes in sea-floor texture on the basis of acoustic return. Areas of high backscatter (light colors) have strong acoustic reflections and suggest boulders, gravels, and generally coarse sea-floor sediments. Low-backscatter areas (dark colors) have weak acoustic reflections and are generally characterized by finer grained material such as muds and fine sands.
2. The polygons were then refined and edited using gradient, rugosity, and hillshaded relief images derived from interferometric and multibeam swath bathymetry and (available at 10 m resolutions). Areas of rough topography and high rugosity are typically associated with rocky areas, while smooth, lower-relief regions tend to be blanketed by fine-grained sediment. These bathymetric derivatives helped to refine polygon boundaries where changes from primarily rock to primarily gravel may not have been apparent in backscatter data, but could easily be identified in hillshaded relief and slope changes.
3. The third data input (where available) was the stratigraphic interpretation of seismic-reflection profiles, which further constrained the extent and general shape of sea-floor sediment distributions and rocky outcrops, and also provided insight concerning the likely sediment texture of the feature on the basis of pre-Quaternary, glacial or post-glacial origin. Seismic lines and the surficial geologic maps derived from them and used here as input data were collected at typically 100-meter spacing, with tie-lines generally spaced 1-km apart.
4. After all the sea-floor features were traced from the geophysical data, a new field was created in the shapefile called 'sed_type'. Seafloor composition observations from sediment samples and bottom photographs/video were used to define sediment texture for the polygons using Barnhardt and others (1998) classification. Samples with laboratory grain size analysis were preferred over visual descriptions when defining sediment texture throughout the study area. Bottom photo stations are typically around 2-km apart, and the density of sediment samples varies throughout the study area. Some polygons contained more than one sample with grain-size statistics, while others contained none. For multiple samples within a polygon, the dominant sediment texture (or average phi size) was used to classify sediment type (often aided by the 'data join' sediment statistics described in a later processing step). In rocky areas, bottom photos were used in the absence of sediment samples to qualitatively define sediment texture. Polygons that lacked sample information were texturally defined through extrapolation from adjacent or proximal polygons of similar acoustic character that did contain sediment samples. 219 samples within the study area were analyzed in the laboratory for grain size. Bottom photo stations are typically around 2-km apart, and the density of sediment samples varies throughout the study area.
- Source_Used_Citation_Abbreviation:
-
All source geophysical data and seafloor sediment observation data
- Process_Date: 2014
- Process_Contact:
-
- Contact_Information:
-
- Contact_Person_Primary:
-
- Contact_Person: Wayne Baldwin
- Contact_Organization: U.S. Geological Survey
- Contact_Position: Geologist
- Contact_Address:
-
- Address_Type: mailing and physical address
- Address: U.S. Geological Survey
- Address: 384 Woods Hole Road
- City: Woods Hole
- State_or_Province: MA
- Postal_Code: 02543-1598
- Country: USA
- Contact_Voice_Telephone: 508-548-8700 x2226
- Contact_Facsimile_Telephone: 508-457-2310
- Contact_Electronic_Mail_Address: wbaldwin@usgs.gov
- Process_Step:
-
- Process_Description:
-
After some additional qualitative polygon editing and reshaping was done in order to create a sediment map that was in the best agreement with all input data: lidar, bathymetry, backscatter, seismic interpretations, bottom photographs, and sediment samples, 3 more fields were added (ArcMap version 9.3.1). The first field, 'simple' is just 3 classes: sand, mud, or hardbottom. Another field 'phi_class' was created and defined using the Wentworth (1922) sediment classification, and finally, a field 'ConfLevel' was added as a data interpretation confidence, which describes how confident we are in the interpretation on the basis of the number and quality of the input data sources (see the entity and attribute sections for more information on these fields). The remaining fields contain sediment texture statistics or mean water depth information and were created and populated using data joins or zonal statistics functions within ArcMap (version 9.3.1). The fields beginning with "Avg_" and the 'Count_' field were automatically generated by computing a data join where the CZM sample database (vector points) was edited to include only the samples with laboratory sediment analysis and joined to the qualitatively derived polygon file. Each polygon was given an average of the numeric attributes of the points (with laboratory grain size analysis) that fall inside it, and the count field shows how many laboratory analyzed points fall inside it. 219 samples were analyzed in the laboratory. Several fields that were not wanted were deleted after the join. A mean water depth (NAVD 88) field was created using ArcMap (version 9.3): ArcToolbox - Spatial Analyst Tools > Zonal > Zonal Statistics as Table, where the mean water depth for each polygon (input zone data using the zone field sed_type) was derived from the regional bathymetric DEM (see vns10m_navd88 in the larger work citation). No data raster values were ignored in determining the output value for each polygon zone. If all raster values were null within a polygon, that zone had a null value (changed to -999) for that zone. The output was saved to a table, which was joined with the sediment type polygon shapefile. All of the joined fields except MEAN were turned off, and the joined shapefile was exported to a new shapefile.
- Source_Used_Citation_Abbreviation:
-
polygon shapefile containing sediment texture units and point shapefile containing seafloor sediment observations
- Process_Date: 2014
- Process_Contact:
-
- Contact_Information:
-
- Contact_Person_Primary:
-
- Contact_Person: Wayne Baldwin
- Contact_Organization: U.S. Geological Survey
- Contact_Position: Geologist
- Contact_Address:
-
- Address_Type: mailing and physical address
- Address: U.S. Geological Survey
- Address: 384 Woods Hole Road
- City: Woods Hole
- State_or_Province: MA
- Postal_Code: 02543-1598
- Country: USA
- Contact_Voice_Telephone: 508-548-8700 x2226
- Contact_Facsimile_Telephone: 508-457-2310
- Contact_Electronic_Mail_Address: wbaldwin@usgs.gov
- Process_Step:
-
- Process_Description:
-
The polygon shapefile containing sediment texture units with joined sediment sample lab statistics was imported as a feature class within a file geodatabase feature dataset, and topological rules were established (ArcCatalog 9.3.1). Topological errors, primarily overlaps and gaps, were identified and remedied using the topology toolbar in ArcMap (9.3.1).
- Source_Used_Citation_Abbreviation:
-
polygon shapefile containing sediment texture units with joined sediment sample lab statistics
- Process_Date: 2014
- Process_Contact:
-
- Contact_Information:
-
- Contact_Person_Primary:
-
- Contact_Person: Wayne Baldwin
- Contact_Organization: U.S. Geological Survey
- Contact_Position: Geologist
- Contact_Address:
-
- Address_Type: mailing and physical address
- Address: U.S. Geological Survey
- Address: 384 Woods Hole Road
- City: Woods Hole
- State_or_Province: MA
- Postal_Code: 02543-1598
- Country: USA
- Contact_Voice_Telephone: 508-548-8700 x2226
- Contact_Facsimile_Telephone: 508-457-2310
- Contact_Electronic_Mail_Address: wbaldwin@usgs.gov
- Process_Step:
-
- Process_Description:
-
The sediment texture polygon feature class was exported back to a shapefile and the 'Shape_Area' and 'Shape_Length' fields were deleted from its attribute table (ArcCatalog and ArcMap 9.3.1). XTools Pro (7.1.0) was then used to add and populate a new attribute field containing polygon area in square kilometers based on UTM, zone 19 N, WGS84. Finally, the shapefile was reprojected from UTM zone 19 N, WGS84 to GCS WGS84 using ArcToolbox > Data Management Tools > Projections and Transformations > Feature > Project.
- Source_Used_Citation_Abbreviation: sediment texture polygon feature class
- Process_Date: 2014
- Process_Contact:
-
- Contact_Information:
-
- Contact_Person_Primary:
-
- Contact_Person: Wayne Baldwin
- Contact_Organization: U.S. Geological Survey
- Contact_Position: Geologist
- Contact_Address:
-
- Address_Type: mailing and physical address
- Address: U.S. Geological Survey
- Address: 384 Woods Hole Road
- City: Woods Hole
- State_or_Province: MA
- Postal_Code: 02543-1598
- Country: USA
- Contact_Voice_Telephone: 508-548-8700 x2226
- Contact_Facsimile_Telephone: 508-457-2310
- Contact_Electronic_Mail_Address: wbaldwin@usgs.gov
- Spatial_Data_Organization_Information:
-
- Direct_Spatial_Reference_Method: Vector
- Point_and_Vector_Object_Information:
-
- SDTS_Terms_Description:
-
- SDTS_Point_and_Vector_Object_Type: G-polygon
- Point_and_Vector_Object_Count: 1149
- Spatial_Reference_Information:
-
- Horizontal_Coordinate_System_Definition:
-
- Geographic:
-
- Latitude_Resolution: 0.000001
- Longitude_Resolution: 0.000001
- Geographic_Coordinate_Units: Decimal degrees
- Geodetic_Model:
-
- Horizontal_Datum_Name: D_WGS_1984
- Ellipsoid_Name: WGS_1984
- Semi-major_Axis: 6378137.000000
- Denominator_of_Flattening_Ratio: 298.257224
- Entity_and_Attribute_Information:
-
- Detailed_Description:
-
- Entity_Type:
-
- Entity_Type_Label: VineyardNantucketSound_sedcover
- Entity_Type_Definition:
-
Sediment Cover shapefile for Vineyard and western Nantucket Sounds
- Entity_Type_Definition_Source: U.S. Geological Survey
- Attribute:
-
- Attribute_Label: FID
- Attribute_Definition: Internal feature number.
- Attribute_Definition_Source: ESRI
- Attribute_Domain_Values:
-
- Unrepresentable_Domain:
-
Sequential unique whole numbers that are automatically generated.
- Attribute:
-
- Attribute_Label: Shape
- Attribute_Definition: Feature geometry.
- Attribute_Definition_Source: Esri
- Attribute_Domain_Values:
-
- Unrepresentable_Domain: Coordinates defining the features.
- Attribute:
-
- Attribute_Label: sed_type
- Attribute_Definition:
-
Bottom-type classification on the basis of twelve composite units that represent combinations of four end-member units (R= rock; G= gravel; S= sand; M= mud).
- Attribute_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: G
- Enumerated_Domain_Value_Definition:
-
The end-member texture (= or > 90%) Gravel (G) is the primary texture.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Gs
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Gravel (G) is given the upper case letter and the subordinate texture (< 50%) sand (s) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: S
- Enumerated_Domain_Value_Definition:
-
The end-member texture (= or > 90%) Sand (S) is the primary texture.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Sg
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Sand (S) is given the upper case letter and the subordinate texture (< 50%) gravel (g) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Sm
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Sand (S) is given the upper case letter and the subordinate texture (< 50%) mud (m) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Ms
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Mud (M) is given the upper case letter and the subordinate texture (< 50%) sand (s) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Rg
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Rock (R) is given the upper case letter and the subordinate texture (< 50%) gravel (g) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Rs
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Rock (R) is given the upper case letter and the subordinate texture (< 50%) sand (s) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Gr
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Gravel (G) is given the upper case letter and the subordinate texture (< 50%) rock (r) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: Sr
- Enumerated_Domain_Value_Definition:
-
The dominant texture (> 50%) Sand (S) is given the upper case letter and the subordinate texture (< 50%) rock (r) is given a lower case letter.
- Enumerated_Domain_Value_Definition_Source: Barnhardt and others (1998)
- Attribute:
-
- Attribute_Label: ConfLevel
- Attribute_Definition:
-
Each interpreted polygon was assigned a data interpretation confidence value from 1-5 (more to less confident) on the basis of the quality and number of input data sources.
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: 1
- Enumerated_Domain_Value_Definition:
-
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m) and backscatter (1m), bottom photos, sediment samples with laboratory analysis, and seismic interpretations were given the highest data interpretation confidence value of 1.
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: 2
- Enumerated_Domain_Value_Definition:
-
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m), backscatter (1m), and seismic data, and possibly bottom photos and/or qualitative descriptions of sediment samples, but no sediment samples with laboratory analysis were given the data interpretation confidence value of 2
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: 3
- Enumerated_Domain_Value_Definition:
-
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m) and backscatter (1m), possibly bottom photos, and possibly sediment samples with laboratory analysis and/or qualitative descriptions, but no seismic interpretations were given the data interpretation confidence value of 3.
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: 4
- Enumerated_Domain_Value_Definition:
-
Sediment texture regions that were defined on the basis of the highest resolution bathymetry (10m) and/or lidar bathymetry, possibly bottom photos, and possibly sediment samples with laboratory analysis and/or qualitative descriptions, but no acoustic backscatter or seismic interpretations were given the data interpretation confidence value of 4.
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: 5
- Enumerated_Domain_Value_Definition:
-
Sediment texture regions that were defined on the basis of low-resolution leadline and/or single beam bathymetry, possibly bottom photos, and possibly sediment samples with laboratory analysis and/or qualitative descriptions were given the lowest data interpretation confidence value of 5.
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute:
-
- Attribute_Label: simple
- Attribute_Definition:
-
sediment nomenclature on the basis of 3 simple classes: sand, mud, hardbottom as defined in the CZM sample database
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: sand
- Enumerated_Domain_Value_Definition: Sediment whose primary component (> 50%) is sand
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: hardbottom
- Enumerated_Domain_Value_Definition:
-
Sediment whose primary component is rock, boulder, cobble, or coarse gravel
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: mud
- Enumerated_Domain_Value_Definition: Sediment whose primary component (> 50%) is silt and clay
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute:
-
- Attribute_Label: phi_class
- Attribute_Definition:
-
Sediment class as defined by Wentworth classification determined using laboratory analyzed samples in the CZM sample database. Null values are indicated as -999 and not all of these phi classes are present in this dataset.
- Attribute_Definition_Source: Wentworth (1922)
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: coarse gravel
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between -4 and -5
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: coarse silt
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 4 and 5
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: coarse sand
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 0 and 1
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: cobble
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between -6 and -8
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: fine gravel
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between -2 and -3
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: fine sand
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 2 and 3
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: fine silt
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 6 and 7
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: medium gravel
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between -3 and -4
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: medium sand
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 2 and 1
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: medium silt
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 5 and 6
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: very coarse gravel
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between -5 and -6
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: very coarse sand
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 0 and -1
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: very fine gravel
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between -1 and -2
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: very fine sand
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 3 and 4
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: very fine silt
- Enumerated_Domain_Value_Definition: sediment class whose phi size is between 7 and 8
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Enumerated_Domain:
-
- Enumerated_Domain_Value: -999
- Enumerated_Domain_Value_Definition:
-
sediment class whose phi size could not be determined from grain size data or there were no samples with laboratory analyzed grain size statistics within the polygon
- Enumerated_Domain_Value_Definition_Source: U.S. Geological Survey
- Attribute:
-
- Attribute_Label: Area
- Attribute_Definition:
-
Area of feature in square kilometers using UTM, zone 19, WGS 84.
- Attribute_Definition_Source: Esri
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: 0.000001
- Range_Domain_Maximum: 90.567
- Attribute_Units_of_Measure: square kilometers
- Attribute_Measurement_Resolution: 0.000001
- Attribute:
-
- Attribute_Label: Count_
- Attribute_Definition:
-
The number of sediment samples (with laboratory analyzed grain size statistics) that occur within each qualitatively derived polygon. This field was automatically generated by Esri when point data (sample database) is joined to a polygon (sediment texture interpretation). A value of zero indicates there are no samples within that polygon.
- Attribute_Definition_Source: Esri
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: 0
- Range_Domain_Maximum: 52
- Attribute_Units_of_Measure: count
- Attribute_Measurement_Resolution: 1
- Attribute:
-
- Attribute_Label: Avg_Gravel
- Attribute_Definition:
-
Average percent weight (%) gravel (as determined from samples with laboratory analyzed grain size statistics) within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation).
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: 0
- Range_Domain_Maximum: 70.88
- Attribute_Units_of_Measure: percent
- Attribute:
-
- Attribute_Label: Avg_Sand
- Attribute_Definition:
-
Average percent weight (%) sand within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation).
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: 11.50
- Range_Domain_Maximum: 100
- Attribute_Units_of_Measure: percent
- Attribute:
-
- Attribute_Label: Avg_Silt
- Attribute_Definition:
-
Average percent weight (%) silt within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation).
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: 0
- Range_Domain_Maximum: 66.49
- Attribute_Units_of_Measure: percent
- Attribute:
-
- Attribute_Label: Avg_Clay
- Attribute_Definition:
-
Average percent weight (%) clay within each qualitatively derived polygon. This field was automatically generated by Esri as a summary of the numeric attributes of the points that fall inside a polygon when point data (sample database) is joined to a polygon (sediment texture interpretation).
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: 0
- Range_Domain_Maximum: 22.14
- Attribute_Units_of_Measure: percent
- Attribute:
-
- Attribute_Label: Avg_PHI
- Attribute_Definition:
-
Average phi size within each qualitatively derived polygon (-999 is a no data value, which means there were no samples with laboratory analyzed grain size statistics within that polygon)
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: -2.28
- Range_Domain_Maximum: 6.63
- Attribute_Units_of_Measure: phi
- Attribute_Measurement_Resolution: 0.01
- Attribute:
-
- Attribute_Label: MEAN
- Attribute_Definition:
-
Average seafloor elevation (NAVD 88) within each qualitatively derived polygon (-999 is a no data value, which means no mean sea-floor elevation was calculated within that polygon).
- Attribute_Definition_Source: U.S. Geological Survey
- Attribute_Domain_Values:
-
- Range_Domain:
-
- Range_Domain_Minimum: -32.95
- Range_Domain_Maximum: -1.37
- Attribute_Units_of_Measure: meters
- Attribute_Measurement_Resolution: 0.01
- Distribution_Information:
-
- Distributor:
-
- Contact_Information:
-
- Contact_Person_Primary:
-
- Contact_Person: Wayne Baldwin
- Contact_Organization: U.S. Geological Survey
- Contact_Position: Geologist
- Contact_Address:
-
- Address_Type: mailing and physical address
- Address: 384 Woods Hole Rd.
- City: Woods Hole
- State_or_Province: MA
- Postal_Code: 02543-1598
- Country: USA
- Contact_Voice_Telephone: 508-548-8700 x2226
- Contact_Facsimile_Telephone: 508-457-2310
- Contact_Electronic_Mail_Address: wbaldwin@usgs.gov
- Resource_Description:
-
VineyardNantucketSound_sedcover.zip from USGS Open File report 2016-1119. WinZip v. 14.5 file contains qualitatively derived polygons that define sea floor texture and distribution from Vineyard and western Nantucket Sounds, MA and the associated metadata.
- Distribution_Liability:
-
Neither the U.S. Government, the Department of the Interior, nor the USGS, nor any of their employees, contractors, or subcontractors, make any warranty, express or implied, nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, nor represent that its use would not infringe on privately owned rights. The act of distribution shall not constitute any such warranty, and no responsibility is assumed by the U.S. Geological Survey in the use of these data or related materials. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government
- Standard_Order_Process:
-
- Digital_Form:
-
- Digital_Transfer_Information:
-
- Format_Name: Shapefile
- Format_Version_Number: ArcMap 9.3.1
- Format_Specification: Esri Polygon Shapefile
- Format_Information_Content:
-
WinZip v. 14.5 file contains qualitatively derived polygons that define sea floor texture and distribution from Vineyard and western Nantucket Sounds, MA and the associated metadata.
- File_Decompression_Technique: WinZip or pkUnzip
- Transfer_Size: 1.16
- Digital_Transfer_Option:
-
- Online_Option:
-
- Computer_Contact_Information:
-
- Network_Address:
-
- Network_Resource_Name:
-
<http://pubs.usgs.gov/of/2016/1119/GIS_catalog/SedimentTexture/VineyardNantucketSound_sedcover.zip>
- Network_Resource_Name: <http://pubs.usgs.gov/of/2016/1119/ofr20161119_data_catalog.html>
- Access_Instructions: Data can be downloaded via the World Wide Web (WWW)
- Fees: None
- Technical_Prerequisites:
-
These data are available in Environmental Systems Research Institute (Esri) shapefile format. The user must have software capable of importing and processing this data type.
- Metadata_Reference_Information:
-
- Metadata_Date: 20161208
- Metadata_Review_Date: 2016
- Metadata_Contact:
-
- Contact_Information:
-
- Contact_Organization_Primary:
-
- Contact_Organization: U.S. Geological Survey
- Contact_Person: Wayne Baldwin
- Contact_Position: Geologist
- Contact_Address:
-
- Address_Type: mailing and physical address
- Address: 384 Woods Hole Rd.
- City: Woods Hole
- State_or_Province: MA
- Postal_Code: 02543-1598
- Country: USA
- Contact_Voice_Telephone: 508-548-8700 x2226
- Contact_Facsimile_Telephone: 508-457-2310
- Contact_Electronic_Mail_Address: wbaldwin@usgs.gov
- Metadata_Standard_Name: FGDC Content Standards for Digital Geospatial Metadata
- Metadata_Standard_Version: FGDC-STD-001-1998
- Metadata_Time_Convention: local time
- Metadata_Access_Constraints: None
- Metadata_Use_Constraints: None
Generated by mp version 2.9.12 on Thu Dec 08 12:00:43 2016