A decade of predatory control of zooplankton species composition of Lake Michigan

Journal of Great Lakes Research
Out-of-print
By: , and 

Links

Abstract

From 1983 to 1992, 71 species representing 38 genera from the Calanoida, Cladocera, Cyclopoida, Mysidacea, Rotifera, Mollusca and Harpacticoida comprised the offshore zooplankton community of Lake Michigan. Our data demonstrate that the composition and abundance of the calanoid community after 1983 is not unlike that of 1960s and that species diversity of the calanoid community is more diverse than the cladoceran community in the 1990s as compared to the early 1980s. Even though the relative biomass of the cladocerans has remained similar over the 1983-1993 period, the species diversity and evenness of the Cladocera community in the early 1990s is unlike anything that has been previously reported for Lake Michigan. Cladocera dominance is centered in one species, Daphnia galeata mendotae, and only three species of Cladocera were observed in the pelagic region of the lake in 1991 and 1992. Nutrient levels, phytoplankton biomass, and the abundance of planktivorous alewife and bloater chub and Bythotrephes are examined as possible causes of these changes in zooplankton species composition. The increase in Rotifera biomass, but not Crustacea, was correlated with an increase in relative biomass of unicellular algae. Food web models suggest Bythotrephes will cause Lake Michigan's plankton to return to a community similar to that of the 1970s; that is Diaptomus dominated. Such a change has occurred. However, correlational analysis suggest that alewife and bloater chubs (especially juveniles) are affecting size and biomass of larger species of zooplankton as well as Bythotrephes.
Publication type Article
Publication Subtype Journal Article
Title A decade of predatory control of zooplankton species composition of Lake Michigan
Series title Journal of Great Lakes Research
DOI 10.1016/S0380-1330(95)71073-5
Volume 21
Issue 4
Year Published 1995
Language English
Contributing office(s) Great Lakes Science Center
Description p. 620-640
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Great Lakes Research
First page 620
Last page 640
Google Analytic Metrics Metrics page
Additional publication details