Aeolian sand within lake sediment from Silver Lake, Michigan can be used as a proxy for the timing of high lake levels of Lake Michigan.We demonstrate that the sand record from Silver Lake plotted as percent weight is in-phase with the elevation curve of Lake Michigan since the mid-Holocene Nipissing Phase. Because fluctuations in Lake Michigan's lake level are recorded in beach ridges, and are a response to climate change, the aeolian sand record within Silver Lake is also a proxy for climate change. It appears that increases in dune activity and lake sand are controlled by similar climatic shifts that drive fluctuations in lake level of Lake Michigan. High lake levels destabilize coastal bluffs that drive dune sand instability, and along with greater wintertime storminess, increase niveo-aeolian transport of sand across lake ice. The sand is introduced into the lake each spring as the ice cover melts.