thumbnail

Statistical power analysis in wildlife research

Journal of Wildlife Management
By:  and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Statistical power analysis can be used to increase the efficiency of research efforts and to clarify research results. Power analysis is most valuable in the design or planning phases of research efforts. Such prospective (a priori) power analyses can be used to guide research design and to estimate the number of samples necessary to achieve a high probability of detecting biologically significant effects. Retrospective (a posteriori) power analysis has been advocated as a method to increase information about hypothesis tests that were not rejected. However, estimating power for tests of null hypotheses that were not rejected with the effect size observed in the study is incorrect; these power estimates will always be a??0.50 when bias adjusted and have no relation to true power. Therefore, retrospective power estimates based on the observed effect size for hypothesis tests that were not rejected are misleading; retrospective power estimates are only meaningful when based on effect sizes other than the observed effect size, such as those effect sizes hypothesized to be biologically significant. Retrospective power analysis can be used effectively to estimate the number of samples or effect size that would have been necessary for a completed study to have rejected a specific null hypothesis. Simply presenting confidence intervals can provide additional information about null hypotheses that were not rejected, including information about the size of the true effect and whether or not there is adequate evidence to 'accept' a null hypothesis as true. We suggest that (1) statistical power analyses be routinely incorporated into research planning efforts to increase their efficiency, (2) confidence intervals be used in lieu of retrospective power analyses for null hypotheses that were not rejected to assess the likely size of the true effect, (3) minimum biologically significant effect sizes be used for all power analyses, and (4) if retrospective power estimates are to be reported, then the I?-level, effect sizes, and sample sizes used in calculations must also be reported.
Publication type Article
Publication Subtype Journal Article
Title Statistical power analysis in wildlife research
Series title Journal of Wildlife Management
Volume 61
Issue 2
Year Published 1997
Language English
Contributing office(s) Forest and Rangeland Ecosystem Science Center
Description p. 270-279
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Wildlife Management
First page 270
Last page 279
Google Analytic Metrics Metrics page
Additional publication details