We adapted a stochastic computer model to simulate productivity of the northern pintail (Anas acuta). Researchers at the Northern Prairie Wildlife Research Center of the U.S. Fish and Wildlife Service originally developed the model to simulate productivity of the mallard (A. platyrhynchos). We obtained data and descriptive information on the breeding biology of pintails from a literature review and from discussions with waterfowl biologists. All biological parameters in the productivity component of the mallard model (e.g, initial body weights, weight loss during laying and incubation, incubation time, clutch size, nest site selection characteristics) were compared with data on pintails and adjusted accordingly. The function in the mallard model that predicts nest initiation in response to pond conditions adequately mimicked pintail behavior and did not require adjustment.Recruitment rate was most sensitive to variations in parameters that control nest success, seasonal duckling survival rate, and yearling and adult body weight. We simulated upland and wetland habitat conditions in central North Dakota and compared simulation results with observed data. Simulated numbers were not significantly different from observed numbers of successful nests during wet, average, and dry wetland conditions. The simulated effect of predator barrier fencing in a study area in central North Dakota increased recruitment rate by an average of 18.4%. This modeling synthesized existing knowledge on the breeding biology of the northern pintail, identified necessary research, and furnished a useful tool for the examination and comparison of various management options.