A system comprising simulation models and data bases for habitat availability and nest success rates was used to predict results from a mallard (Anas platyrhynchos) management plan and to compare six management methods with a control. Individual treatments in the applications included land purchase for waterfowl production, wetland easement purchase, lease of uplands for waterfowl management, cropland retirement, use of no-till winter wheat, delayed cutting of alfalfa, installation of nest baskets, nesting island construction, and use of predator-resistant fencing.The simulations predicted that implementation of the management plan would increase recruits by 24%. Nest baskets were the most effective treatment, accounting for 20.4% of the recruits. No-till winter wheat was the second most effective, accounting for 5.9% of the recruits. Wetland loss due to drainage would cause an 11% loss of breeding population in 10 years.The models were modified to account for migrational homing. The modification indicated that migrational homing would enhance the effects of management. Nest success rates were critical contributions to individual management methods. The most effective treatments, such as nest baskets, had high success rates and affected a large portion of the breeding population.Economic analyses indicated that nest baskets would be the most economical of the three techniques tested. The applications indicated that the system is a useful tool to aid management decisions, but data are scarce for several important variables. Basic research will be required to adequately model the effect of migrational homing and density dependence on production. The comprehensive nature of predictions desired by managers will also require that production models like the one described here be extended to encompass the entire annual cycle of waterfowl.