In recent years, survival analysis of radio-tagged animals has developed using methods based on the Kaplan-Meier method used in medical and engineering applications (Pollock et al., 1989a,b). An important assumption of this approach is that all tagged animals with a functioning radio can be relocated at each sampling time with probability 1. This assumption may not always be reasonable in practice. In this paper, we show how a general capture-recapture model can be derived which allows for some probability (less than one) for animals to be relocated. This model is not simply a Jolly-Seber model because it is possible to relocate both dead and live animals, unlike when traditional tagging is used. The model can also be viewed as a generalization of the Kaplan-Meier procedure, thus linking the Jolly-Seber and Kaplan-Meier approaches to survival estimation. We present maximum likelihood estimators and discuss testing between submodels. We also discuss model assumptions and their validity in practice. An example is presented based on canvasback data collected by G. M. Haramis of Patuxent Wildlife Research Center, Laurel, Maryland, USA.