This paper summarizes published and unpublished sources relating to exposure of Canada geese (Branta canadensis) to pesticides, emphasizing documented episodes of poisoning by organochlorine (OC), organophosphorus (OP), and carbamate compounds. Canada geese accumulate the lipid-soluble OC compounds, although they have a lower potential for biomagnification of these pesticides than animals at higher trophic levels in food webs. Low residues of p,p'-DDT and its metabolite p,p'-DDE were frequently found in tissues and eggs of Canada geese, but they had no apparent adverse effects on reproductive success or eggshell thickness. Likewise, in an orchard system in central Washington state, the OC rodenticide endrin accumulated in tissues and eggs of Canada geese without apparent adverse effect. In contrast, ingestion of seeds treated with the OC heptachlor caused mortality, lowered reproductive success, and caused a local population decline of geese in Oregon and Washington. In recent years, the most persistent OC's have been banned by law and replaced with less persistent carbamate and OP compounds that do not readily accumulate in animal tissues. However, many of these compounds are acutely toxic and have caused numerous die-offs of Canada geese. Among OP compounds, diazinon was responsible for most reported die-offs (41 incidents involving >535 geese), whereas parathion applied alone or jointly with methyl parathion accounted for most reported mortalities (8 incidents involving >3,000 geese). Three other OP's, a carbamate (carbofuran), zinc phosphide, and strychnine also caused goose die-offs. Mortality from anticholinesterase (antiChE) compounds occurs relatively soon after exposure and death can usually be diagnosed by evaluation of brain cholinesterase (thE) activity. Because geese are primarily grazers, the main route of exposure to antiChE's is apparently ingestion of contaminated grasses and forbs; dermal absorption and inhalation are other routes. Despite the widespread die-offs of Canada geese from antiChE insecticides, there is no evidence of adverse effects on population levels. It is not known how sublethal antiChE exposure relates to long-term survival and reproductive success of birds.