Much effort in life-history theory has been addressed to the dependence of life-history traits on age, especially the phenomenon of senescence and its evolution. Although senescent declines in survival are well documented in humans and in domestic and laboratory animals, evidence for their occurrence and importance in wild animal species remains limited and equivocal. Several recent papers have suggested that methodological issues may contribute to this problem, and have encouraged investigators to improve sampling designs and to analyse their data using recently developed approaches to modelling of capture-mark-recapture data. Here we report on a three-year, two-site, mark-recapture study of known-aged common terns (Sterna hirundo) in the north-eastern USA. The study was nested within a long-term ecological study in which large numbers of chicks had been banded in each year for > 25 years. We used a range of models to test the hypothesis of an influence of age on survival probability. We also tested for a possible influence of sex on survival. The cross-sectional design of the study (one year's parameter estimates) avoided the possible confounding of effects of age and time. The study was conducted at a time when one of the study sites was being colonized and numbers were increasing rapidly. We detected two-way movements between the sites and estimated movement probabilities in the year for which they could be modelled. We also obtained limited data on emigration from our study area to more distant sites. We found no evidence that survival depended on either sex or age, except that survival was lower among the youngest birds (ages 2-3 years). Despite the large number of birds included in the study (1599 known-aged birds, 2367 total), confidence limits on estimates of survival probability were wide, especially for the oldest age-classes, so that a slight decline in survival late in life could not have been detected. In addition, the cross-sectional design of this study meant that a decline in survival probability within individuals (actuarial senescence) could have been masked by heterogeneity in survival probability among individuals (mortality selection). This emphasizes the need for the development of modelling tools permitting separation of these two phenomena, valid under field conditions in which the recapture probabilities are less than one.