Assessment of population size and changes therein is important to sea turtle management and population or life history research. Investigators might be interested in testing hypotheses about the effect of current population size or density (number of animals per unit resource) on future population processes. Decision makers might want to determine a level of allowable take of individual turtles of specified life stage. Nevertheless, monitoring most stages of sea turtle life histories is difficult, because obtaining access to individuals is difficult. Although in-water assessments are becoming more common, nesting females and their hatchlings remain the most accessible life stages. In some cases adult females of a given nesting population are sufficiently philopatric that the population itself can be well defined. If a well designed tagging study is conducted on this population, survival, breeding probability, and the size of the nesting population in a given year can be estimated. However, with published statistical methodology the size of the entire breeding population (including those females skipping nesting in that year) cannot be estimated without assuming that each adult female in this population has the same probability of nesting in a given year (even those that had just nested in the previous year). We present a method for estimating the total size of a breeding population (including nesters those skipping nesting) from a tagging study limited to the nesting population, allowing for the probability of nesting in a given year to depend on an individual's nesting status in the previous year (i.e., a Markov process). From this we further develop estimators for rate of growth from year to year in both nesting population and total breeding population, and the proportion of the breeding population that is breeding in a given year. We also discuss assumptions and apply these methods to a breeding population of hawksbill sea turtles (Eretmochelys imbricata) from the Caribbean. We anticipate that this method could also be useful for in-water studies of well defined populations.