Rapid Bioassessment Protocols (RBP) and the Sediment Quality Triad (SQT) were used to evaluate the biological effects of a municipal waste-water treatment facility (WWTF) on a small southern stream. During major storm events, raw sewage from the WWTF is released directly into the stream. The headwaters of the stream also receive non-point surface runoff from urban areas. RBP analyses, which included benthos, fish and habitat evaluations, and SQT, including the benthos (from the RBP), contaminant analyses (metals, organochlorine pesticides, PCBs and PAHs) andl toxicity tests of depositional sediment (exposures of Hyalella azteca to solid-phase sediment and pore water) were conducted at five sites on the stream (two upstream of the WWTF and three downstream). The stream has been channelized throughout its entire length, resulting in high, unstable banks, degraded stream channel, and unstable substratum. RBP analyses indicated that the two stations upstream of the WWTF were degraded due to poor physical habitat quality (unstable benthic substratum and lack of fish habitat). The SQT also showed reduced habitat quality at the two stations above the WWTF, but the cause was attributed to high concentrations of PAHs and metals in the sediments. The increased discharge and stabilized base flow provided by the WWTF improved habitat quality downnstream, although conditions were still impaired due to the habitat alteration. Though the causes of degradation were attributed to different factors (physical habitat vs. contamination), there was close concordance between the RBP and SQT in identifying the degraded sites in this stream. The combination of these two procedures provides a robust examination of environmental quality utilizing the weight of evidence approach.