Matrix population models that allow an animal to occupy more than one state over time are important tools for population and evolutionary ecologists. Definition of state can vary, including location for metapopulation models and breeding state for life history models. For populations whose members can be marked and subsequently re-encountered, multistate mark-recapture models are available to estimate the survival and transition probabilities needed to construct population models. Multistate models have proved extremely useful in this context, but they often require a substantial amount of data and restrict estimation of transition probabilities to those areas or states subjected to formal sampling effort. At the same time, for many species, there are considerable tag recovery data provided by the public that could be modeled in order to increase precision and to extend inference to a greater number of areas or states. Here we present a statistical model for combining multistate capture-recapture data (e.g., from a breeding ground study) with multistate tag recovery data (e.g., from wintering grounds). We use this method to analyze data from a study of Canada Geese (Branta canadensis) in the Atlantic Flyway of North America. Our analysis produced marginal improvement in precision, due to relatively few recoveries, but we demonstrate how precision could be further improved with increases in the probability that a retrieved tag is reported.