Understanding the relationships between animal population demography and the abiotic and biotic elements of the environments in which they live is a central objective in population ecology. For example, correlations between weather variables and the probability of survival in populations of temperate zone amphibians may be broadly applicable to several species if such correlations can be validated for multiple situations. This study focuses on the probability of survival and evaluates hypotheses based on six weather variables in three populations of Boreal Toads (Bufo boreas) from central Colorado over eight years. In addition to suggesting a relationship between some weather variables and survival probability in Boreal Toad populations, this study uses robust methods and highlights the need for demographic estimates that are precise and have minimal bias. Capture-recapture methods were used to collect the data, and the Cormack-Jolly-Seber model in program MARK was used for analysis. The top models included minimum daily winter air temperature, and the sum of the model weights for these models was 0.956. Weaker support was found for the importance of snow depth and the amount of environmental moisture in winter in modeling survival probability. Minimum daily winter air temperature was positively correlated with the probability of survival in Boreal Toads at other sites in Colorado and has been identified as an important covariate in studies in other parts of the world. If air temperatures are an important component of survival for Boreal Toads or other amphibians, changes in climate may have profound impacts on populations. Copyright 2008 Society for the Study of Amphibians and Reptiles.