Refugia are increasingly being used to maintain and propagate imperiled freshwater mussels for future population augmentations. Success for this endeavor is dependent on good husbandry, including a holistic program of resource health management. A significant aspect to optimal health is the prevention or control of infectious diseases. Describing and monitoring pathogens and diseases in mussels involves examination of tissues or samples collected from an appropriate number of individuals that satisfies a certain confidence level for expected prevalences of infections. In the present study, ebonyshell mussels Fusconaia ebena were infected with a fish pathogenic bacterium, Aeromonas salmonicida, through their cohabitation with diseased brook trout Salvelinus fontinalis. At a 100% prevalence of infection, the F. ebena were removed from the cohabitation tank to clean tanks that were supplied with pathogen-free water, which initiated their depuration of A. salmonicida. Three samples (nondestructive fluid, mantle, hemolymph) collected using nondestructive procedures were compared with fluids and soft tissue homogenates collected after sacrificing the mussels for recovery of the bacterium during this period of depuration. Nondestructive sample collections, especially ND fluid, provide a comparable alternative to sacrificing mussels to determine pathogen status.