Introduced mosquito-borne pathogens avian malaria (Plasmodium relictum Grassi and Feletti) and avian pox virus (Avipoxvirus) have been implicated in the past extinctions and declines of Hawaiian avifauna and remain significant obstacles to the recovery and restoration of endemic Hawaiian birds. Effective management of avian disease will require extensive mosquito control efforts that are guided by the local ecology of the vector Culex quinquefasciatus Say (Diptera: Culicidae). During October and November 1997 and September through November 1998 five mark-release-recapture experiments with laboratory-reared Cx. quinquefasciatus were conducted in a native rain forest on Hawaii Island. Of the overall 66,047 fluorescent dye-marked and released females, 1,192 (1.8%) were recaptured in 43-52 CO2-baited traps operated for 10-12-d trapping periods. Recaptured mosquitoes were trapped in all directions and at distances up to 3 km from the release site. The cumulative mean distance traveled (MDTs) over the trapping period ranged from a high of 1.89 km after 11 d (September 1998) to a low of 0.81 km after 11 d (November 1998). Released mosquitoes moved predominately in a downwind direction and they seemed to use forestry roads as dispersal corridors. Applying an estimated MDT of 1.6 km to a geographical information system-generated map of the Hakalau Forest National Wildlife Refuge clearly demonstrated that the effective refuge area could be reduced 60% by mosquitoes infiltrating into managed refuge lands. These findings should have significant implications for the design of future refuges and development of effective mosquito-borne avian disease control strategies.