Mercury and drought along the Lower Carson River, Nevada: III. effects on blood and organ biochemistry and histopathology of snowy egrets and black-crowned night-herons on Lahontan Reservoir, 2002-2006

Journal of Toxicology and Environmental Health, Part A
By: , and 

Links

Abstract

A 10-year study (1997-2006) was conducted to evaluate reproduction and health of aquatic birds in the Carson River Basin of northwestern Nevada (on the U.S. Environmental Protection Agency Natural Priorities List) due to high mercury (Hg) concentrations from past mining activities. This part of the study evaluated physiological associations with blood Hg in young snowy egrets (Egretta thula) and black-crowned night-herons (Nycticorax nycticorax), and organ biochemistry and histopathological effects in snowy egrets on Lahontan Reservoir (LR) from the period 2002-2006. LR snowy egret geometric mean total Hg concentrations (μg/g ww) ranged from 1.5 to 4.8 for blood, 2.4 to 3.1 liver, 1.8 to 2.5 kidneys, 1.7 to 2.4 brain, and 20.5 to 36.4 feathers over these years. For night-herons, mean Hg for blood ranged from 1.6 to 7.4. Significant positive correlations were found between total Hg in blood and five plasma enzyme activities of snowy egrets suggesting hepatic stress. Histopathological findings revealed vacuolar changes in hepatocytes in LR snowy egrets as well as correlation of increased liver inflammation with increasing blood and tissue Hg. Hepatic oxidative effects were manifested by decreased hepatic total thiol concentration and glutathione reductase activity and elevated hepatic thiobarbituric acid-reactive substances (TBARS), a measure of lipid peroxidation. However, other hepatic changes indicated compensatory mechanisms in response to oxidative stress, including decreased oxidized glutathione (GSSG) concentration and decreased ratio of GSSG to reduced glutathione. In young black-crowned night-herons, fewer correlations were apparent. In both species, positive correlations between blood total Hg and plasma uric acid and inorganic phosphorus were suggestive of renal stress, which was supported by histopathological findings. Both oxidative effects and adaptive responses to oxidative stress were apparent in kidneys and brain. Vacuolar change and inflammation in peripheral nerves were found to correlate with blood and tissue Hg. Hg-associated effects related to the immune system included alterations in specific white blood cells and lymphoid depletion in the bursa that were correlated with blood and tissue Hg. When the number of plasma variables that differed between young snowy egrets from the LR site and the reference site were compared between wet and drought years, over twice as many variables were affected during drought years. This resulted in many more variables correlating with blood total Hg during dry than during wet years, suggesting the combination of drought and Hg was more stressful than Hg alone. Drought may have exacerbated Hg-related effects as reported previously for overall productivity. This relationship was not evident in black-crowned night-herons, although data were more limited.
Publication type Article
Publication Subtype Journal Article
Title Mercury and drought along the Lower Carson River, Nevada: III. effects on blood and organ biochemistry and histopathology of snowy egrets and black-crowned night-herons on Lahontan Reservoir, 2002-2006
Series title Journal of Toxicology and Environmental Health, Part A
DOI 10.1080/15287390903129218
Volume 72
Issue 20
Year Published 2009
Language English
Publisher Taylor and Francis
Contributing office(s) Forest and Rangeland Ecosystem Science Center, Patuxent Wildlife Research Center, Toxic Substances Hydrology Program
Description 19 p.
First page 1223
Last page 1241
Time Range Start 2002-01-01
Time Range End 2006-12-31
Country United States
State Nevada
Other Geospatial Lahontan Reservoir
Google Analytic Metrics Metrics page
Additional publication details