Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors

Journal of Environmental Quality
By: , and 

Links

Abstract

Although the importance of vascular plant-derived dissolved organic carbon (DOC) in freshwater systems has been studied, the role of leached DOC as precursors of disinfection byproducts (DBPs) during drinking water treatment is not well known. Here we measured the propensity of leachates from four crops and four aquatic macrophytes to form trihalomethanes (THMs)—a regulated class of DBPs—before and after 21 d of microbial degradation. We also measured lignin phenol content and specific UV absorbance (SUVA254) to test the assumption that aromatic compounds from vascular plants are resistant to microbial degradation and readily form DBPs. Leaching solubilized 9 to 26% of total plant carbon, which formed 1.93 to 6.72 mmol THM mol C-1 However, leachate DOC concentrations decreased by 85 to 92% over the 21-d incubation, with a concomitant decrease of 67 to 92% in total THM formation potential. Carbon-normalized THM yields in the residual DOC pool increased by 2.5 times on average, consistent with the preferential uptake of nonprecursor material. Lignin phenol concentrations decreased by 64 to 96% over 21 d, but a lack of correlation between lignin content and THM yields or SUVA254 suggested that lignin-derived compounds are not the source of increased THM precursor yields in the residual DOC pool. Our results indicate that microbial carbon utilization alters THM precursors in ecosystems with direct plant leaching, but more work is needed to identify the specific dissolved organic matter components with a greater propensity to form DBPs and affect watershed management, drinking water quality, and human health.
Publication type Article
Publication Subtype Journal Article
Title Microbial degradation of plant leachate alters lignin phenols and trihalomethane precursors
Series title Journal of Environmental Quality
DOI 10.2134/jeq2009.0487
Volume 39
Issue 3
Year Published 2010
Language English
Publisher American Society of Agronomy
Publisher location Madison, WI
Contributing office(s) California Water Science Center
Description 9 p.
First page 946
Last page 954
Google Analytic Metrics Metrics page
Additional publication details