The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California

Geochimica et Cosmochimica Acta
By: , and 

Links

Abstract

Biotic/abiotic interactions between soil mineral nutrients and annual grassland vegetation are characterized for five soils in a marine terrace chronosequence near Santa Cruz, California. A Mediterranean climate, with wet winters and dry summers, controls the annual cycle of plant growth and litter decomposition, resulting in net above-ground productivities of 280–600 g m−2 yr−1. The biotic/abiotic (A/B) interface separates seasonally reversible nutrient gradients, reflecting biological cycling in the shallower soils, from downward chemical weathering gradients in the deeper soils. The A/B interface is pedologically defined by argillic clay horizons centered at soil depths of about one meter which intensify with soil age. Below these horizons, elevated solute Na/Ca, Mg/Ca and Sr/Ca ratios reflect plagioclase and smectite weathering along pore water flow paths. Above the A/B interface, lower cation ratios denote temporal variability due to seasonal plant nutrient uptake and litter leaching. Potassium and Ca exhibit no seasonal variability beneath the A/B interface, indicating closed nutrient cycling within the root zone, whereas Mg variability below the A/B interface denotes downward leakage resulting from higher inputs of marine aerosols and lower plant nutrient requirements.

The fraction of a mineral nutrient annually cycled through the plants, compared to that lost from pore water discharge, is defined their respective fluxes Fj,plants = qj,plants/(qj,plants + qj,discharge) with average values for K and Ca (FK,plants = 0.99; FCa,plants = 0.93) much higher than for Mg and Na (FMg,plants 0.64; FNa,plants = 0.28). The discrimination against Rb and Sr by plants is described by fractionation factors (KSr/Ca = 0.86; KRb/K = 0.83) which are used in Rayleigh fractionation-mixing calculations to fit seasonal patterns in solute K and Ca cycling. KRb/K and K24Mg/22Mg values (derived from isotope data in the literature) fall within fractionation envelopes bounded by inputs from rainfall and mineral weathering. KSr/Ca and K44Ca/40Ca fractionation factors fall outside these envelopes indicating that Ca nutrient cycling is closed to these external inputs. Small net positive K and Ca fluxes (6–14 mol m−2 yr−1), based on annual mass balances, indicate that the soils are accumulating mineral nutrients, probably as a result of long-term environmental disequilibrium.

Study Area

Publication type Article
Publication Subtype Journal Article
Title The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California
Series title Geochimica et Cosmochimica Acta
DOI 10.1016/j.gca.2011.10.029
Volume 77
Year Published 2012
Language English
Publisher Elsevier
Contributing office(s) Branch of Regional Research-Western Region
Description 24 p.
First page 62
Last page 85
Country United States
State California
City Santa Cruz
Google Analytic Metrics Metrics page
Additional publication details