Seismicity and faulting attributable to fluid extraction
Links
- More information: Publisher Index Page (via DOI)
- Download citation as: RIS | Dublin Core
Abstract
The association between fluid injection and seismicity has been well documented and widely publicized. Less well known, but probably equally widespread are faulting and shallow seismicity attributable solely to fluid extraction, particularly in association with petroleum production. Two unequivocable examples of seismicity and faulting associated with fluid extraction in the United States are: The Goose Creek, Texas oil field event of 1925 (involving surface rupture); and the Wilmington, California oil field events (involving subsurface rupture) of 1947, 1949, 1951 (2), 1955, and 1961. Six additional cases of intensity I-VII earthquakes (M < 4.6) without reported faulting may be attributable to shallow production from other large oil and gas fields. In addition to these examples are thirteen cases of apparently aseismic surface rupture associated with production from California and Texas oil fields. Small earthquakes in the Eloy-Picacho area of Arizona may be attributable to withdrawal of groundwater, but their relation to widespread fissuring is enigmatic. The clearest example of extraction-induced seismicity outside of North America is the 1951 series of earthquakes associated with gas production from the Po River delta near Caviga, Italy. Faulting and seismicity associated with fluid extraction are attributed to differential compaction at depth caused by reduction of reservoir fluid pressure and attendant increase in effective stress. Surface and subsurface measurements and theoretical and model studies show that differential compaction leads not only to differential subsidence and centripetally-directed horizontal displacements, but to changes in both vertical- and horizontal-strain regimes. Study of well-documented examples indicates that the occurrence and nature of faulting and seismicity associated with compaction are functions chiefly of: (1) the pre-exploitation strain regime, and (2) the magnitude of contractional horizontal strain centered over the compacting materials relative to that of the surrounding annulus of extensional horizontal strain. The examples cited include natural systems strained only by extraction of fluids, as well as some subsequently subjected to injection. Faulting and seismicity have accompanied both decrease and subsequent increase of fluid pressures; reversal of fluid-pressure decline by injection may enhance the likelihood of subsurface faulting and seismicity due chiefly to earlier fluid pressure reduction. A consistent common denominator appears to be continuing compaction at depth; the relative effects of fluid extraction followed by injection are not easily separated.
Publication type | Article |
---|---|
Publication Subtype | Journal Article |
Title | Seismicity and faulting attributable to fluid extraction |
Series title | Engineering Geology |
DOI | 10.1016/0013-7952(76)90017-X |
Volume | 10 |
Issue | 2-4 |
Year Published | 1976 |
Language | English |
Publisher | Elsevier |
Description | 17 p. |
First page | 151 |
Last page | 167 |
Google Analytic Metrics | Metrics page |