Several aspects of the Maryland ridge field are pertinent to the problem of ridge genesis in response to Holocene sea-level rise. There is a systematic morphologic change from shoreface ridges through nearshore ridges to offshore ridges, which reflects the changing hydraulic regime. Grain size is 90?? out of phase with topography, so that the coarsest sand lies between the axis of each trough and the adjacent seaward ridge crest, while the finest sand lies between each ridge crest and the axis of the adjacent seaward trough. Finally, analysis over a 43-year period on an outer ridge reveals a systematic pattern of landward flank erosion, seaward flank deposition, and seaward crest migration. These relationships support a model which explains the ridges as consequences of the up-current shift of maximum bottom shear stress with respect to the crests of initial bottom irregularities. The oblique orientation of the ridges with respect to the beach may be at least partly due to the more rapid migration rate of the ridges' inshore ends. ?? 1981 A.M. Dowden, Inc.