Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages

Journal of Geophysical Research Solid Earth
By: , and 

Metrics

43
Crossref references
Web analytics dashboard Metrics definitions

Links

Abstract

We produced a series of decimeter-sized impact craters in blocks of ice near 0°C and −70°C and in ice-saturated sand near −70°C as a preliminary investigation of cratering in materials analogous to those found on Mars and the outer solar system satellites. The projectiles used were standard 0.22 and 0.30 caliber bullets fired at velocities between 0.3 and 1.5 km/s, with kinetic energies at impact between 109 and 4×1010 ergs. Crater diameters in the ice-saturated sand were ∼2 times larger than craters in the same energy and velocity range in competent blocks of granite, basalt and cement. Craters in ice were ∼3 times larger. If this dependence of crater size on strength persists to large hypervelocity impact craters, then surfaces of geologic units composed of ice or ice-saturated soil would have greater crater count ages than rocky surfaces with identical influx histories. The magnitude of the correction to crater counts required by this strength effect is comparable to the magnitudes of corrections required by variations in impact velocity and surface gravity used in determining relative interplanetary chronologies. The relative sizes of craters in ice and ice-saturated sand imply that the tensile strength of ice-saturated sand is a strong inverse function of temperature. If this is true, then Martian impact crater energy versus diameter scaling may also be a function of latitude.

Publication type Article
Publication Subtype Journal Article
Title Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages
Series title Journal of Geophysical Research Solid Earth
DOI 10.1029/JB084iB14p08023
Volume 84
Issue B14
Publication Date September 20, 2012
Year Published 1979
Language English
Publisher American Geophysical Union
Description 10 p.
First page 8023
Last page 8032
Additional publication details