The Tulelake basin, formed by east-west extension and faulting during the past several million years, contains at least 550 m of lacustrine sediment. Interdisciplinary studies of a 334 m-long cored section from the town of Tulelake, California, near the center of the basin, document a 3-m.y. record of environmental changes. The core consists of a thick sequence of diatomaceous clayey, silty, and marly lacustrine sediments interbedded with numerous tephra layers. Paleomagnetic study puts the base of the core at about 3.0 Ma. Twelve widespread silicic tephra units provide correlations with other areas and complement age control provided by magnetostratigraphy; mafic and silicic tephra units erupted from local sources are also common in the core. Widespread tephra units include the Llao Rock pumice (=Tsoyawata, 7 ka), the Trego Hot Springs Bed (23 ka), and the Rockland (0.40 Ma), Lava Creek (0.62 Ma), and Rio Dell (1.5 Ma) ash beds, as well as several ash beds also found at Summer Lake, Oregon, and an ash bed originally recognized in DSDP hole 173 in the northeastern Pacific. Several tephra layers found in the core also occur in lacustrine beds exposed around the margins of the basin and elsewhere in the ancestral lacustrine system. Diatoms are present throughout the section. Pollen is present in most of the section, but some barren zones are found in the interval between 50 and 140 m; the greatest change in behavior of the pollen record takes place just above the top of the Olduvai Normal-Polarity Subchronozone. Ostracodes are present only in high-carbonate (>10% CaCO3) intervals. Evolutionary changes are found in the diatom and ostracode records. Bulk geochemical analyses show significant changes in elemental composition of the sediment through time. ?? 1989.