Recent studies document the effectiveness of sea ice in reshaping the seafloor of the inner shelf into sharp-relief features, including ice gouges with jagged flanking ridges, ice-wallow relief, and 2- to 6-m-deep strudel-scour craters. These ice-related relief forms are in disequilibrium with classic open-water hydraulic processes and thus are smoothed over by waves and currents in one to two years. Such alternate reworking of the shelf by ice and currents - two diverse types of processes, which in the case of ice wallow act in unison-contributes to sediment mobility and, thus, to sediment loss from the coast and inner shelf. The bulldozing action by ice results in coast-parallel sediment displacement. Additionally, suspension of sediment by frazil and anchor ice, followed by ice rafting, can move large amounts of bottom-derived materials. Our understanding of all these processes is insufficient to model Arctic coastal processes.