Cokriging is applied to estimation of missing monthly streamflow values in three records from gaging stations in west central Virginia. Missing values are estimated from optimal consideration of the pattern of auto- and cross-correlation among standardized residual log-flow records. Investigation of the sensitivity of estimation to data configuration showed that when observations are available within two months of a missing value, estimation is improved by accounting for correlation. Concurrent and lag-one observations tend to screen the influence of other available observations. Three models of covariance structure in residual log-flow records are compared using cross-validation. Models differ in how much monthly variation they allow in covariance. Precision of estimation, reflected in mean squared error (MSE), proved to be insensitive to this choice. Cross-validation is suggested as a tool for choosing an inverse transformation when an initial nonlinear transformation is applied to flow values. ?? 1986 Plenum Publishing Corporation.