The Geologic and the National Mapping divisions of the U.S. Geological Survey have been involved formally in cooperative research and development of computer-based geographic information systems (GISs) applied to mineral-resource assessment objectives since 1982. Experience in the Conterminous United States Mineral Assessment Program (CUSMAP) projects including the Rolla, Missouri; Dillon, Montana; Butte, Montana; and Tonopah, Nevada 1?? ?? 2?? quadrangles, has resulted in the definition of processing requirements for geographically and mineral-resource data that are common to these studies. The diverse formats of data sets collected and compiled for regional mineral-resource assessments necessitate capabilities for digitally encoding and entering data into appropriate tabular, vector, and raster subsystems of the GIS. Although many of the required data sets are either available or can be provided in a digital format suitable for direct entry, their utility is largely dependent on the original intent and consequent preprocessing of the data. In this respect, special care must be taken to ensure the digital data type, encoding, and format will meet assessment objectives. Data processing within the GIS is directed primarily toward the development and application of models that can be used to describe spatially geological, geophysical, and geochemical environments either known or inferred to be associated with specific types of mineral deposits. Consequently, capabilities to analyze spatially, aggregate, and display relations between data sets are principal processing requirements. To facilitate the development of these models within the GIS, interfaces must be developed among vector-, raster-, and tabular-based processing subsystems to reformat resident data sets for comparative analyses and multivariate display of relations.