Hydrous pyrolysis of an immature (R(a)??? 0.25%) sulphur-rich marl from the Gessoso-solfifera Formation (Messinian) in the Vena del Gesso Basin was carried out at 160C ??? T ???330 C for 72 h, to study the effect of progressive diagenesis and early catagenesis on the abundance and distribution of sulphur-containing and sulphur- and oxygen-linked carbon skeletons in low-molecular-weight and highmolecular-weight fractions (e.g. kerogen). To this end, compounds in the saturated hydrocarbon fraction, monoaromatic hydrocarbon fraction, polyaromatic hydrocarbon fraction, alkylsulphide fraction and ketone fraction were quantified, as well as compounds released after desulphurisation of the polar fraction and HI/LiAIH4 treatment of the desulphurised polar fraction. Sulphur-bound phytane and (20R)-5??,14??,17??(H) and (20R)-5??,14??,17??(H) C27 C29 steranes in the polar fraction become less abundant with increasing maturation temperature, whereas the amount of their corresponding hydrocarbons increases in the saturated hydrocarbon fraction. Carbon skeletons that are bound in the kerogen by multiple bonds (e.g. C38 n-alkane and isorenieratane) are first released into the polar fraction, and then as free hydrocarbons. These changes occur at relatively low levels of thermal maturity (R(a) <0.6%), as evidenced by the 'immature' values of biomarker maturity parameters such as the ????/(????+ ???? + ????) C35 hopane ratio and the 22S/(22S + 22R)-17??,21??(H) C35 hopane ratio. Sulphur- and oxygen-bound moieties, present in the polar fraction, are not stable with increasing thermal maturation. However, alkylthiophenes, ketones. 1,2-di-n-alkylbenzenes and free n-alkanes seem to be stable thermal degradation products of these sulphur- and oxygen-bound moieties. Thus, apart from free n-alkanes, which are abundantly present in more mature sedimentary rocks and crude oils, alkylthiophenes, 1,2-di-n-alkylbenzenes and ketones can also be expected to occur. The positions of the thiophene moiety and the carbonyl group coincide with the original positions of the functional groups of their precursors. Thus, important information about palaeobiochemicals is retained throughout the sequestration/degradation process.