Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone

Journal of Geophysical Research C: Oceans
By:  and 

Links

Abstract

The time-dependent response of sediment suspension to flow velocity was explored by modeling field measurements collected in the surf zone during a large storm. Linear and nonlinear models were created and tested using flow velocity as input and suspended-sediment concentration as output. A sequence of past velocities (velocity history), as well as velocity from the same instant as the suspended-sediment concentration, was used as input; this velocity history length was allowed to vary. The models also allowed for a lag between input (instantaneous velocity or end of velocity sequence) and output (suspended-sediment concentration). Predictions of concentration from instantaneous velocity or instantaneous velocity raised to a power (up to 8) using linear models were poor (correlation coefficients between predicted and observed concentrations were less than 0.10). Allowing a lag between velocity and concentration improved linear models (correlation coefficient of 0.30), with optimum lag time increasing with elevation above the seabed (from 1.5 s at 13 cm to 8.5 s at 60 cm). These lags are largely due to the time for an observed flow event to effect the bed and mix sediment upward. Using a velocity history further improved linear models (correlation coefficient of 0.43). The best linear model used 12.5 s of velocity history (approximately one wave period) to predict concentration. Nonlinear models gave better predictions than linear models, and, as with linear models, nonlinear models using a velocity history performed better than models using only instantaneous velocity as input. Including a lag time between the velocity and concentration also improved the predictions. The best model (correlation coefficient of 0.58) used 3 s (approximately a quarter wave period) of the cross-shore velocity squared, starting at 4.5 s before the observed concentration, to predict concentration. Using a velocity history increases the performance of the models by specifying a more complete description of the dynamical forcing of the flow (including accelerations and wave phase and shape) responsible for sediment suspension. Incorporating such a velocity history and a lag time into the formulation of the forcing for time-dependent models for sediment suspension in the surf zone will greatly increase our ability to predict suspended-sediment transport.

Publication type Article
Publication Subtype Journal Article
Title Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone
Series title Journal of Geophysical Research C: Oceans
DOI 10.1029/96JC00495
Volume 101
Issue C6
Year Published 1996
Language English
Publisher American Geophysical Union
Description 14 p.
First page 14283
Last page 14296
Google Analytic Metrics Metrics page
Additional publication details