Nine sites on streams in the Platte River Basin in central Nebraska were sampled as part of the US Geological Survey's National Water Quality Assessment Program during 1993-1994. A combination of canonical correspondence analysis and an index of biotic integrity determined from fish community data produced complementary evaluations of water quality conditions. Results of the canonical correspondence analysis were useful in showing which environmental variables were significant in differentiating fish communities at the nine sites. Five environmental variables were statistically significant in the analysis. Median specific conductance of water samples collected at a site accounted for the largest amount of variability in the species data. Although the percentage of the basin as cropland was not the first variable chosen in a forward selection process, it was the most strongly correlated with the first ordination axis. A rangeland- dominated site was distinguished from all others along that axis. Median orthophosphate concentration of samples collected in the year up to the time of fish sampling was most strongly correlated with the second ordination axis. The index of biotic integrity produced results that could be interpreted in terms of the relative water quality between sites. Sites draining nearly 100% cropland had the lowest scores for two individual metrics of the index of biotic integrity that were related to species tolerance. Effective monitoring of water quality could be achieved by coupling methods that address both the ecological components of fish communities and their statistical relationships to environmental factors.