We examined susceptibility of wild rainbow trout Oncorhynchus mykiss from the Metolius River, a tributary of the Deschutes River, Oregon, to genetic introgression and ceratomyxosis as a result of stocking nonnative hatchery rainbow trout. Ceratomyxa shasta, an enzootic myxosporean parasite that can be lethal to nonnative hatchery rainbow trout, might have been limiting the interbreeding of hatchery and wild rainbow trout in the river. However, rainbow trout from the Metolius River had allozyme frequencies intermediate between those of wild and hatchery fish at LDH-B2* and sSOD-1*, two diagnostic genetic loci that allow the inland subspecies of rainbow trout to be distinguished from hatchery strains of coastal origin. They also had notable frequencies of ADA-1*85, an allele documented in hatchery rainbow trout but rarely seen in wild populations. We also found that rainbow trout in the Metolius River averaged 138.9 scales in the lateral series, intermediate between the counts for 9 coastal or nonnative hatchery populations, which always had fewer than 140 scales, and 10 inland populations, which always had more than 140 scales. Disease challenges revealed that rainbow trout from the Metolius River had much greater susceptibility to C. shasta than rainbow trout from the Deschutes River, which have genetic resistance to the lethal disease. Based on these data, we concluded that introgression with nonnative hatchery rainbow trout has reduced the abilities of wild rainbow trout in the Metolius River to survive when conditions for ceratomyxosis infection occur.