Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada

Applied and Environmental Microbiology
By: , and 



Sediments from mercury-contaminated and uncontaminated reaches of the Carson River, Nevada, were assayed for sulfate reduction, methanogenesis, denitrification, and monomethylmercury (MeHg) degradation. Demethylation of [14C]MeHg was detected at all sites as indicated by the formation of 14CO2 and 14CH4. Oxidative demethylation was indicated by the formation of 14CO2 and was present at significant levels in all samples. Oxidized/reduced demethylation product ratios (i.e., 14CO2/14CH4 ratios) generally ranged from 4.0 in surface layers to as low as 0.5 at depth. Production of 14CO2 was most pronounced at sediment surfaces which were zones of active denitrification and sulfate reduction but was also significant within zones of methanogenesis. In a core taken from an uncontaminated site having a high proportion of oxidized, coarse-grain sediments, sulfate reduction and methanogenic activity levels were very low and 14CO2 accounted for 98% of the product formed from [14C]MeHg. There was no apparent relationship between the degree of mercury contamination of the sediments and the occurrence of oxidative demethylation. However, sediments from Fort Churchill, the most contaminated site, were most active in terms of demethylation potentials. Inhibition of sulfate reduction with molybdate resulted in significantly depressed oxidized/reduced demethylation product ratios, but overall demethylation rates of inhibited and uninhibited samples were comparable. Addition of sulfate to sediment slurries stimulated production of 14CO2 from [14C]MeHg, while 2-bromoethanesulfonic acid blocked production of 14CH4. These results reveal the importance of sulfate-reducing and methanogenic bacteria in oxidative demethylation of MeHg in anoxic environments.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada
Series title Applied and Environmental Microbiology
DOI 10.1128/aem.61.7.2745-2753.1995
Volume 61
Issue 7
Year Published 1995
Language English
Publisher American Society for Microbiology
Contributing office(s) Toxic Substances Hydrology Program
Description 9 p.
First page 2745
Last page 2753
Country United States
State Nevada
City Fort Churchill, Gardnerville
Other Geospatial Carson River, Lahontan Reservoir
Google Analytic Metrics Metrics page
Additional publication details