Application of the LI-COR CO2 analyzer to volcanic plumes: a case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995

Journal of Geophysical Research B: Solid Earth
By: , and 

Links

Abstract

Volcanic CO2 emission rate data are sparse despite their potential importance for constraining the role of magma degassing in the biogeochemical cycle of carbon and for assessing volcanic hazards. We used a LI-COR CO2 analyzer to determine volcanic CO2 emission rates by airborne measurements in volcanic plumes at Popocatépetl volcano on June 7 and 10, 1995. LI-COR sample paths of ∼72 m, compared with ∼1 km for the analyzer customarily used, together with fast Fourier transforms to remove instrument noise from raw data greatly improve resolution of volcanic CO2 anomalies. Parametric models fit to background CO2 provide a statistical tool for distinguishing volcanic from ambient CO2. Global Positioning System referenced flight traverses provide vastly improved data on the shape, coherence, and spatial distribution of volcanic CO2 in plume cross sections and contrast markedly with previous results based on traverse stacking. The continuous escape of CO2 and SO2 from Popocatépetl was fundamentally noneruptive and represented quiescent magma degassing from the top of a magma chamber ∼5 km deep. The average CO2 emission rate for January-June 1995 is estimated to be at least 6400 t d−1, one of the highest determined for a quiescently degassing volcano, although correction for downwind dispersion effects on volcanic CO2 indicates a higher rate of ∼9000 t d−1. Analysis of random errors indicates emission rates have 95% confidence intervals of ∼±20%, with uncertainty contributed mostly by wind speed variance, although the variance of plume cross-sectional areas during traversing is poorly constrained and possibly significant.

Publication type Article
Publication Subtype Journal Article
Title Application of the LI-COR CO2 analyzer to volcanic plumes: a case study, volcán Popocatépetl, Mexico, June 7 and 10, 1995
Series title Journal of Geophysical Research B: Solid Earth
DOI 10.1029/96JB03887
Volume 102
Issue B4
Year Published 1997
Language English
Publisher AGU Publications
Description 15 p.
First page 8005
Last page 8019
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional publication details