The stable isotopic records of ostracode valves deposited during the last interglaciation in Raymond Basin, Illinois, have ??13C and ??18O values as high as +16.5??? and +9.2??? respectively, the highest values yet reported from continental ostracodal calcite. Located in south-central Illinois, Raymond, Pittsburgh, Bald Knob, and Hopwood Farm basins collectively have yielded important long pollen and ostracode records that date from about 130 000 years ago to the present. Although fossils from the present-day interglaciation are not well preserved, these records constitute the only described, conformable, fossiliferous successions of this age from the interior of glaciated North America. The high ??13C values from Raymond Basin are attributed to the residual effects of methane loss either by ebullition or by emission through the stems of senescent emergent aquatic vegetation. A mass balance model suggests that an increase in ??13C of dissolved inorganic carbon on the order of +15??? is possible within a few hours given modest rates of methanogenesis of about 0.02 mol m-2 d-1. The ??13C records from other studies of ostracode valves have values approaching, but not exceeding about +14??? suggesting a limiting value to ???13C enrichment due to simultaneous inputs and outputs of dissolved inorganic carbon. Values of ??18O in ostracodal calcite are quite variable (-4 to +9???) in sediment from the late Sangamon subepisode. A model of isotopic enrichment in a desiccating water body implies that a reduction in reservoir volume of 20% could produce this range of isotopic values. High humidity and evaporation probably account for most of the ??18O variability.