thumbnail

Paragenesis and chemistry of multistage tourmaline formation in the sullivan Pb-Zn-Ag deposit, British Columbia

Economic Geology
By: , and 

Links

  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core

Abstract

Detailed petrographic study, scanning electron microscope imaging, and electron microprobe analyses of tourmalines from the Sullivan Pb-Zn-Ag massive sulfide deposit (British Columbia, Canada) document multiple paragenetic stages and large compositional variations. The tourmalines mainly belong to two common solid-solution series: dravite-schorl and dravite-uvite. Ca- and Fe-rich feruvite and alkali-deficient tourmalines are present locally. Products of tourmaline-forming stages include (from oldest to youngest): (1) rare Fe-rich dravite-schorl within black tourmalinite clasts in footwall fragmental rocks; (2) widespread Mg-rich, very fine grained, felted dravite in the footwall (the main type of tourmaline in the footwall tourmalinite pipe); (3) recrystallized, Fe-rich dravite-schorl (locally Ca-Fe feruvite) in the tourmalinite pipe, which preferentially occurs near postore gabbroic intrusions; (4) Mg-rich dravite or uvite associated with chlorite-pyrrhotite and chlorite-albite-pyrite-altered rocks in the shallow footwall and hanging wall; (5) discrete Mg-rich tourmaline grains associated with chlorite and discordant Mg-rich tourmaline rims which occur on disseminated Fe-rich schorl in the bedded Pb-Zn-Ag ores. The timing of rare Fe-rich schorl in the bedded ores is uncertain, but it most likely occurred during or between stages 2 and 3. The different paragenetic stages and their respective tourmaline compositions are interpreted in terms of a multistage evolution involving contributions from: (1) variable mixtures of synsedimentary, Fe-rich hydrothermal fluids and entrained seawater; (2) postore, Fe-rich, gabbro-related hydrothermal fluids; and (3) postore metamorphic reactions. Early synsedimentary, Fe-rich hydrothermal fluids which contained little or no entrained seawater formed Fe-rich black tourmalinite clasts locally in the footwall. The major type of tourmaline in the footwall tourmalinite pipe is Mg rich, recording seawater entrainment under high water/rock conditions, rather than control by the chemical composition of the original host sediments. Rare Fe-rich schorl within the bedded Pb-Zn-Ag ores is believed to have formed on the sea floor by reaction of an Fe-rich brine pool with detrital aluminous sediments. Postore emplacement of gabbro sills and local dikes in the footwall produced Fe-rich hydrothermal fluids, which were responsible for formation of minor Fe-rich dravite-schorl which overprinted earlier dravite. Postore, but synsedimentary, hydrothermal alteration involving entrained seawater was responsible for deposition of dravite and uvite in the hanging wall and for dravite in the brown tourmalinites of the shallow footwall. Mg-rich dravite-uvite associated with chlorite and in discordant rims on schorl in the bedded ores formed by sulfide-silicate reactions during greenschist facies regional metamorphism.
Publication type Article
Publication Subtype Journal Article
Title Paragenesis and chemistry of multistage tourmaline formation in the sullivan Pb-Zn-Ag deposit, British Columbia
Series title Economic Geology
Volume 93
Issue 1
Year Published 1998
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Economic Geology
First page 47
Last page 67
Google Analytic Metrics Metrics page
Additional publication details