A simulation-optimization model was developed for the optimal management of the city of Santa Barbara's water resources during a drought; however, this model addressed only groundwater flow and not the advective-dispersive, density-dependent transport of seawater. Zero-m freshwater head constraints at the coastal boundary were used as surrogates for the control of seawater intrusion. In this study, the strategies derived from the simulation-optimization model using two surface water supply scenarios are evaluated using a two-dimensional, density-dependent groundwater flow and transport model. Comparisons of simulated chloride mass fractions are made between maintaining the actual pumping policies of the 1987-91 drought and implementing the optimal pumping strategies for each scenario. The results indicate that using 0-m freshwater head constraints allowed no more seawater intrusion than under actual 1987-91 drought conditions and that the simulation-optimization model yields least-cost strategies that deliver more water than under actual drought conditions while controlling seawater intrusion.