Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems

Environmental Science & Technology
By: , and 

Links

Abstract

We examined microbial methylmercury (MeHg) degradation in sediment of the Florida Everglades, Carson River (NV), and San Carlos Creek (CA), three freshwater environments that differ in the extent and type of mercury contamination and sediment biogeochemistry. Degradation rate constant (kdeg) values increased with total mercury (Hgt) contamination both among and within ecosystems. The highest kdeg's (2.8−5.8 d-1) were observed in San Carlos Creek, at acid mine drainage impacted sites immediately downstream of the former New Idria mercury mine, where Hgt ranged from 4.5 to 21.3 ppm (dry wt). A reductive degradation pathway (presumably mer-detoxification) dominated degradation at these sites, as indicated by the nearly exclusive production of 14CH4 from 14C-MeHg, under both aerobic and anaerobic conditions. At the upstream control site, and in the less contaminated ecosystems (e.g. the Everglades), kdeg's were low (≤0.2 d-1) and oxidative demethylation (OD) dominated degradation, as evident from 14CO2production. kdeg increased with microbial CH4 production, organic content, and reduced sulfur in the Carson River system and increased with decreasing pH in San Carlos Creek. OD associated CO2 production increased with pore-water SO42- in Everglades samples but was not attributable to anaerobic methane oxidation, as has been previously proposed. This ecosystem comparison indicates that severely contaminated sediments tend to have microbial populations that actively degrade MeHg via mer-detoxification, whereas OD occurs in heavily contaminated sediments as well but dominates in those less contaminated.

Publication type Article
Publication Subtype Journal Article
Title Methyl-mercury degradation pathways: A comparison among three mercury impacted ecosystems
Series title Environmental Science & Technology
DOI 10.1021/es0013125
Volume 34
Issue 23
Year Published 2000
Language English
Publisher ACS
Contributing office(s) Toxic Substances Hydrology Program
Description 9 p.
First page 4908
Last page 4916
Google Analytic Metrics Metrics page
Additional publication details