Using submarine lava pillars to record mid-ocean ridge eruption dynamics

Earth and Planetary Science Letters
By: , and 

Links

Abstract

Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Publication type Article
Publication Subtype Journal Article
Title Using submarine lava pillars to record mid-ocean ridge eruption dynamics
Series title Earth and Planetary Science Letters
DOI 10.1016/S0012-821X(00)00085-6
Volume 178
Issue 3-4
Year Published 2000
Language English
Publisher Elsevier
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Earth and Planetary Science Letters
First page 195
Last page 214
Google Analytic Metrics Metrics page
Additional publication details