Waterbirds have died of lead poisoning from ingesting lead fishing sinkers in the United States and Europe. Estimating abundance and distribution of sinkers in the environment will help researchers to understand the potential effects of lead poisoning from sinker ingestion. We used a metal detector to test how environmental conditions and sinker characteristics affected detection of sinkers. Odds of detecting a lead sinker depended on the interaction of sinker mass and depth where it was buried (P=0.002). The odds of detecting a sinker increased with mass and decreased with depth buried. Lead split-shot sinkers were less detectable than tin, brass, and stainless steel sinkers. Detecting lead sinkers was not influenced by sinker shape, substrate type, or whether we searched underwater or on land. We developed a model to determine the proportion of sinkers detected when this detector is used to search for sinkers, so sinker abundance can be estimated. The log odds (Logit) of detecting a lead sinker with mass M g buried D cm below the surface was Logit Y= -1.63 + 4.20 M - 0.45 D - 0.27 MD + 0.0002 D2. The probability of detecting a lead sinker was e(Logit Y)/(1 + e(Logit Y)). At the surface, 90% of sinkers with mass 0.9 g will be detected.