On rate-state and Coulomb failure models

Journal of Geophysical Research B: Solid Earth
By: , and 

Links

Abstract

We examine the predictions of Coulomb failure stress and rate-state frictional models. We study the change in failure time (clock advance) Δt due to stress step perturbations (i.e., coseismic static stress increases) added to "background" stressing at a constant rate (i.e., tectonic loading) at time t0. The predictability of Δt implies a predictable change in seismicity rate r(t)/r0, testable using earthquake catalogs, where r0 is the constant rate resulting from tectonic stressing. Models of r(t)/r0, consistent with general properties of aftershock sequences, must predict an Omori law seismicity decay rate, a sequence duration that is less than a few percent of the mainshock cycle time and a return directly to the background rate. A Coulomb model requires that a fault remains locked during loading, that failure occur instantaneously, and that Δt is independent of t0. These characteristics imply an instantaneous infinite seismicity rate increase of zero duration. Numerical calculations of r(t)/r0 for different state evolution laws show that aftershocks occur on faults extremely close to failure at the mainshock origin time, that these faults must be "Coulomb-like," and that the slip evolution law can be precluded. Real aftershock population characteristics also may constrain rate-state constitutive parameters; a may be lower than laboratory values, the stiffness may be high, and/or normal stress may be lower than lithostatic. We also compare Coulomb and rate-state models theoretically. Rate-state model fault behavior becomes more Coulomb-like as constitutive parameter a decreases relative to parameter b. This is because the slip initially decelerates, representing an initial healing of fault contacts. The deceleration is more pronounced for smaller a, more closely simulating a locked fault. Even when the rate-state Δt has Coulomb characteristics, its magnitude may differ by some constant dependent on b. In this case, a rate-state model behaves like a modified Coulomb failure model in which the failure stress threshold is lowered due to weakening, increasing the clock advance. The deviation from a non-Coulomb response also depends on the loading rate, elastic stiffness, initial conditions, and assumptions about how state evolves.
Publication type Article
Publication Subtype Journal Article
Title On rate-state and Coulomb failure models
Series title Journal of Geophysical Research B: Solid Earth
DOI 10.1029/1999JB900438
Volume 105
Issue B4
Year Published 2000
Language English
Publisher American Geophysical Union
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Geophysical Research B: Solid Earth
First page 7857
Last page 7871
Google Analytic Metrics Metrics page
Additional publication details