Rhenium-osmium systematics of calcium-aluminium-rich inclusions in carbonaceous chondrites

Geochimica et Cosmochimica Acta
By: , and 



The Re-Os isotopic systematics of calcium-aluminium-rich inclusions (CAIs) in chondrites were investigated in order to shed light on the behavior of the Re-Os system in bulk chondrites, and to constrain the timing of chemical fractionation in primitive chondrites. CAIs with relatively unfractionated rare earth element (REE) patterns (groups I, III, V, VI) define a narrow range of 187Re/188Os (0.3764-0.4443) and 187Os/188Os (0.12599-0.12717), and high but variable Re and Os abundances (3209-41,820 ppb Os). In contrast, CAIs that show depletions in highly refractory elements and strongly fractionated REE patterns (group II) also show a much larger range in 187Re/188Os (0.409-0.535) and 187Os/188Os (0.12695-0.13770), and greater than an order of magnitude lower Re and Os abundances than other groups (e.g., 75.7-680.2 ppb Os). Sixteen bulk CAIs and CAI splits plot within analytical uncertainty of a 4558 Ga reference isochron, as is expected for materials of this antiquity. Eight samples, however, plot off the isochron. Several possible reasons for these deviations are discussed. Data for multiple splits of one CAI indicate that the nonisochronous behavior for at least this CAI is the result of Re-Os reequilibration at approximately 1.6 Ga. Thus, the most likely explanation for the deviations of most of the nonisochronous CAIs is late-stage open-system behavior of Re and Os in the asteroidal environment. The 187Os/188Os-Os systematics of CAIs are consistent with previous models that indicate group II CAIs are mixtures of components that lost the bulk of their highly refractory elements in a previous condensation event and a minor second component that provided refractory elements at chondritic relative proportions. The high Re/Os of group II CAIs relative to other CAIs and chondrite bulk rocks may have been caused by variable mobilization of Re and Os during medium- to low-temperature parent body alteration ??4.5 Ga ago. This model is favored over nebular models, which pose several difficulties. The narrow range of 187Os/188Os in group I, III, V, and VI bulk CAIs, and the agreement with 187Os/188Os of whole rock carbonaceous chondrites suggest that on a bulk inclusion scale, secondary alteration only modestly fractionated Re/Os in these CAIs. The average of 187Os/188Os for group I, III, V, and VI CAIs is indistinguishable from average CI chondrites, indicating a modern solar system value for 187Os/188Os of 0.12650, corresponding to a 187Re/188Os of 0.3964. Copyright ?? 2001 Elsevier Science Ltd.
Publication type Article
Publication Subtype Journal Article
Title Rhenium-osmium systematics of calcium-aluminium-rich inclusions in carbonaceous chondrites
Series title Geochimica et Cosmochimica Acta
DOI 10.1016/S0016-7037(01)00676-7
Volume 65
Issue 19
Year Published 2001
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Geochimica et Cosmochimica Acta
First page 3379
Last page 3390
Google Analytic Metrics Metrics page
Additional publication details